The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Human ceruloplasmin. Intramolecular electron transfer kinetics and equilibration.

Pulse radiolytic reduction of disulfide bridges in ceruloplasmin yielding RSSR(-) radicals induces a cascade of intramolecular electron transfer (ET) processes. Based on the three-dimensional structure of ceruloplasmin identification of individual kinetically active disulfide groups and type 1 (T1) copper centers, the following is proposed. The first T1 copper(II) ion to be reduced in ceruloplasmin is the blue copper center of domain 6 ( T1A) by ET from RSSR(-) of domain 5. The rate constant is 28 +/- 2 s(-1) at 279 K and pH 7. 0. T1A is in close covalent contact with the type 3 copper pair and indeed electron equilibration between T1A and the trinuclear copper center in the domain 1-6 interface takes place with a rate constant of 2.9 +/- 0.6 s(-1). The equilibrium constant is 0.17. Following reduction of T1A Cu(II), another ET process takes place between RSSR(-) and T1B copper(II) of domain 4 with a rate constant of 3.9 +/- 0. 8. No reoxidation of T1B Cu(I) could be resolved. It appears that the third T1 center (T1C of domain 2) is not participating in intramolecular ET, as it seems to be in a reduced state in the resting enzyme.[1]

References

  1. Human ceruloplasmin. Intramolecular electron transfer kinetics and equilibration. Farver, O., Bendahl, L., Skov, L.K., Pecht, I. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities