The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes.

The identification of the cystic fibrosis transmembrane conductance regulator gene ( CFTR) in 1989 represents a landmark accomplishment in human genetics. Since that time, there have been numerous advances in elucidating the function of the encoded protein and the physiological basis of cystic fibrosis. However, numerous areas of cystic fibrosis biology require additional investigation, some of which would be facilitated by information about the long-range sequence context of the CFTR gene. For example, the latter might provide clues about the sequence elements responsible for the temporal and spatial regulation of CFTR expression. We thus sought to establish the sequence of the chromosomal segments encompassing the human CFTR and mouse Cftr genes, with the hope of identifying conserved regions of biologic interest by sequence comparison. Bacterial clone-based physical maps of the relevant human and mouse genomic regions were constructed, and minimally overlapping sets of clones were selected and sequenced, eventually yielding approximately 1.6 Mb and approximately 358 kb of contiguous human and mouse sequence, respectively. These efforts have produced the complete sequence of the approximately 189-kb and approximately 152-kb segments containing the human CFTR and mouse Cftr genes, respectively, as well as significant amounts of flanking DNA. Analyses of the resulting data provide insights about the organization of the CFTR/ Cftr genes and potential sequence elements regulating their expression. Furthermore, the generated sequence reveals the precise architecture of genes residing near CFTR/ Cftr, including one known gene (WNT2/ Wnt2) and two previously unknown genes that immediately flank CFTR/ Cftr.[1]


  1. Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. Ellsworth, R.E., Jamison, D.C., Touchman, J.W., Chissoe, S.L., Braden Maduro, V.V., Bouffard, G.G., Dietrich, N.L., Beckstrom-Sternberg, S.M., Iyer, L.M., Weintraub, L.A., Cotton, M., Courtney, L., Edwards, J., Maupin, R., Ozersky, P., Rohlfing, T., Wohldmann, P., Miner, T., Kemp, K., Kramer, J., Korf, I., Pepin, K., Antonacci-Fulton, L., Fulton, R.S., Minx, P., Hillier, L.W., Wilson, R.K., Waterston, R.H., Miller, W., Green, E.D. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
WikiGenes - Universities