The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neuronal and glial glycine transporters have different stoichiometries.

A neurotransmitter transporter can potentially mediate uptake or release of substrate, and its stoichiometry is a key factor that controls the driving force and thus the neurotransmitter flux direction. We have used a combination of electrophysiology and radio-tracing techniques to evaluate the stoichiometries of two glycine transporters involved in glycinergic or glutamatergic transmission. We show that GlyT2a, a transporter present in glycinergic boutons, has a stoichiometry of 3 Na+/Cl-/glycine, which predicts effective glycine accumulation in all physiological conditions. GlyT1b, a glial transporter, has a stoichiometry of 2 Na+/Cl-/ glycine, which predicts that glycine can be exported or imported, depending on physiological conditions. GlyT1b may thus modulate glutamatergic synapses by increasing or decreasing the glycine concentration around N-methyl-D-aspartate receptors (NMDARs).[1]

References

 
WikiGenes - Universities