The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate.

Phosphorus (P) is one of the most important nutrients limiting agricultural production worldwide. In acid and alkaline soils, which make up over 70% of the world's arable land, P forms insoluble compounds that are not available for plant use. To reduce P deficiencies and ensure plant productivity, nearly 30 million tons of P fertilizer are applied every year. Up to 80% of the applied P fertilizer is lost because it becomes immobile and unavailable for plant uptake. Therefore, the development of novel plant varieties more efficient in the use of P represents the best alternative to reduce the use of P fertilizers and achieve a more sustainable agriculture. We show here that the ability to use insoluble P compounds can be significantly enhanced by engineering plants to produce more organic acids. Our results show that when compared to the controls, citrate-overproducing plants yield more leaf and fruit biomass when grown under P-limiting conditions and require less P fertilizer to achieve optimal growth.[1]


  1. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. López-Bucio, J., de La Vega, O.M., Guevara-García, A., Herrera-Estrella, L. Nat. Biotechnol. (2000) [Pubmed]
WikiGenes - Universities