Cloning and mapping of murine superoxide dismutase copper chaperone (Ccsd) and mapping of the human ortholog.
Copper does not exist in a free state within cells but is found consistently bound to metalloproteins. Specific metallochaperones escort copper to numerous targets within the cell, providing protection from the toxic effects of intracellular free copper. Many metallochaperones have been characterized in yeast, mouse, and human. To further characterize mouse metallochaperones, we cloned murine Ccsd from an adult mouse cDNA brain library, including both the coding region and the 5' and 3' UTRs. We obtained a 1,174-bp cDNA with an 825-bp open reading frame, translating a 274 amino acid protein that is 86.9% identical to human CCS. Using a mouse x hamster radiation hybrid panel, we mapped Ccsd to a proximal position on mouse chromosome 19. We mapped human CCS to 11q13 (homologous with mouse chromosome 19), utilizing a human x hamster radiation hybrid panel. The human and mouse metallochaperones are ubiquitously expressed in the major tissues of the body but seem to have different transcription products.[1]References
- Cloning and mapping of murine superoxide dismutase copper chaperone (Ccsd) and mapping of the human ortholog. Moore, S.D., Chen, M.M., Cox, D.W. Cytogenet. Cell Genet. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg