Amperometric sensing of ethylene oxide in the gas phase.
The sensing device used is based on a porous Pt electrode, which is supported on an ion-exchange membrane and directly exposed to the gas phase. Under acid conditions, ethylene oxide was found to be oxidized on the platinum oxide surface at +550 mV vs MSE, thus enabling its monitoring via the measurement of the associated current. A detection limit of 15 ppb was obtained, based on a signal-to-noise ratio of three, and a linear dynamic range was found up to 100 ppm. The effects of mass transport, humidity, and oxygen on the cell response, as well as the cross sensitivity to other organic vapors and inorganic gases are discussed.[1]References
- Amperometric sensing of ethylene oxide in the gas phase. Hodgson, A.W., Jacquinot, P., Hauser, P.C. Anal. Chem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg