The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A transactivation-deficient mouse model provides insights into Trp53 regulation and function.

The gene Trp53 is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it suppresses tumour formation remain unclear. We generated mice with an allele encoding changes at Leu25 and Trp26, known to be essential for transcriptional transactivation and Mdm2 binding, to enable analyses of Trp53 structure and function in vivo. The mutant Trp53 was abundant, its level was not affected by DNA damage and it bound DNA constitutively; however, it showed defects in cell-cycle regulation and apoptosis. Both mutant and Trp53-null mouse embryonic fibroblasts (MEFs) were readily transformed by oncogenes, and the corresponding mice were prone to tumours. We conclude that the determining pathway for Trp53 tumour-suppressor function in mice requires the transactivation domain.[1]

References

  1. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Jimenez, G.S., Nister, M., Stommel, J.M., Beeche, M., Barcarse, E.A., Zhang, X.Q., O'Gorman, S., Wahl, G.M. Nat. Genet. (2000) [Pubmed]
 
WikiGenes - Universities