The structure and distribution of ceramide aminoethylphosphonates in the oyster (Ostrea gigas).
1. Ceramide aminoethylphosphonate was isolated from the adductor, gills, mantle and viscera of oysters. 2. After drastic acid hydrolysis of the lipid, aminoethylphosphonic acid was the only water-soluble carbon-phosphorous compound detected. 3. The main fatty acids of ceramide aminoethylphosphonates were hexadecanoic acid (77-90%) and 2-hydroxy hexadecanoic acid (13-15%). 4. Hexadeca-4-sphingenine, octadeca-4-sphingenine and octadeca-4,8-sphingadienine were identified as the major long chain base components. However, the ratio of the three bases was characteristic for each tissue; the adductor muscle contains primarily hexadeca-4-sphingenine, and the viscera, octadeca-4,8-sphingadienine. The gills and mantle contain the three bases in approximately equal concentration. 5. The main molecular species in the adductor muscle was hexadecanoyl-hexadeca-4-sphingenyl 2-aminoethylphosphonate, while in the viscera hexade-canoyl-octadeca-4,8-sphingenyl 2-aminoethylphosphonate predominated.[1]References
- The structure and distribution of ceramide aminoethylphosphonates in the oyster (Ostrea gigas). Matsubara, T. Biochim. Biophys. Acta (1975) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg