The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Requirement of multiple protein domains and residues for gating K(ATP) channels by intracellular pH.

ATP-sensitive K(+) channels (K(ATP)) are regulated by pH in addition to ATP, ADP, and phospholipids. In the study we found evidence for the molecular basis of gating the cloned K(ATP) by intracellular protons. Systematic constructions of chimerical Kir6.2-Kir1.1 channels indicated that full pH sensitivity required the N terminus, C terminus, and M2 region. Three amino acid residues were identified in these protein domains, which are Thr-71 in the N terminus, Cys-166 in the M2 region, and His-175 in the C terminus. Mutation of any of them to their counterpart residues in Kir1.1 was sufficient to completely eliminate the pH sensitivity. Creation of these residues rendered the mutant channels clear pH-dependent activation. Thus, critical players in gating K(ATP) by protons are demonstrated. The pH sensitivity enables the K(ATP) to regulate cell excitability in a number of physiological and pathophysiological conditions when pH is low but ATP concentration is normal.[1]

References

  1. Requirement of multiple protein domains and residues for gating K(ATP) channels by intracellular pH. Piao, H., Cui, N., Xu, H., Mao, J., Rojas, A., Wang, R., Abdulkadir, L., Li, L., Wu, J., Jiang, C. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities