The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Ab initio calculations on the mechanism of the oxidation of the hydroxymethyl radical by molecular oxygen in the gas phase: a significant reaction for environmental science.

The mechanism of the gas-phase reaction of *CH2OH+O2 to form CH2O+HO2* was studied theoretically by means of high-level quantum-chemical electronic structure methods (CASSCF and CCSD(T)). The calculations indicate that the oxidation of *CH2OH by O2 is a two-step process that goes through the peroxy radical intermediate *OOCH2OH (1), formed by the barrier-free radical addition of *CH2OH to O2. The concerted elimination of HO2* from 1 is predicted to occur via a five-membered ringlike transition structure of Cs symmetry, TS1, which lies 19.6 kcalmol(-1) below the sum of the energies of the reactants at 0 K. A four-membered ringlike transition structure TS2 of Cs symmetry, which lies 13.9 kcalmol(-1) above the energy of the separated reactants at 0 K, was also found for the concerted HO2* elimination from 1. An analysis of the electronic structures of TS1 and TS2 indicates that both modes of concerted HO2* elimination from 1 are better described as internal proton transfers than as intramolecular free-radical H-atom abstractions. The intramolecular 1,4-H-atom transfer in 1, which yields the alkoxy radical intermediate HOOCH2O*, takes place via a puckered ringlike transition structure TS3 that lies 13.7 kcalmol(-1) above the energy of the reactants at 0 K. In contrast with earlier studies suggesting that a direct H-atom abstraction mechanism might occur at high temperatures, we could not find any transition structure for direct H-atom transfer from the OH group of *CH2OH to the O2. The observed non-Arrhenius behavior of the temperature dependence of the rate constant for the gas-phase oxidation of *CH2OH is ascribed to the combined effect of the initial barrier-free formation of the *OO-CH2OH adduct with a substantial energy release and the existence of a low-barrier and two high-barrier pathways for its decomposition into CH2O and HO2*.[1]


WikiGenes - Universities