Dysferlin expression after normal myoblast transplantation in SCID and in SJL mice.
Limb girdle muscular dystrophy type 2B form and Miyoshi myopathy are both caused by mutations in the recently cloned gene dysferlin. In the present study, we have investigated whether cell transplantation could permit dysferlin expression in vivo. Two transplantation models were used: SCID mice transplanted with normal human myoblasts, and SJL mice, the mouse model for limb girdle muscular dystrophy type 2B and Miyoshi myopathy, transplanted with allogeneic primary mouse muscle cell cultures expressing the beta-galactosidase gene under control of a muscle promoter of Troponin I. FK506 immunosuppression was used in the non-compatible allogeneic model. One month after transplantation, human and mouse dysferlin proteins were detected in all transplanted SCID and SJL muscles, respectively. Co-localization of dysferlin and human dystrophin or beta-galactosidase-positive fibers was observed following the transplantation of myoblasts. Dysferlin proteins were monitored by immunocytochemistry and Western blot. The number of dysferlin-positive fibers was 40-50% and 20-30% in SCID and SJL muscle sections, respectively. Detection of dysferlin in both SCID mice and dysferlin-deficient SJL mouse shows that myoblast transplantation permits the expression of the donor dysferlin protein.[1]References
- Dysferlin expression after normal myoblast transplantation in SCID and in SJL mice. Leriche-Guérin, K., Anderson, L.V., Wrogemann, K., Roy, B., Goulet, M., Tremblay, J.P. Neuromuscul. Disord. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg