The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Application of low-temperature glassy carbon films in solid-phase microextraction.

Low-temperature glassy carbon (LTGC) films were investigated as a sorbent coating for solid-phase microextraction because of its uniquely selective adsorptive characteristics. The selectivity of these coatings is primarily controlled by shape characteristics of the solute molecule and the final processing temperature used to form the LTGC, demonstrating unique adsorptive characteristics compared to commercial phases. The LTGC films were prepared by first coating porous silica particles with a diethylnyl oligomer precursor and then heat curing at temperatures between 300 and 1000 degrees C to form the LTGC. Then, using a sol-gel process, the LTGC-coated silica particles were immobilized onto stainless steel fibers and subsequently used for headspace and liquid extractions followed by GC-FID analysis. The selectivity of the LTGC is demonstrated by the extraction of a variety of aromatic hydrocarbons as well as the taste and odor contaminants geosmin, 2-methylisoborneol, and 2,4,6-trichloroanisole commonly found in water supplies. The data show that the LTGC coating has the highest affinity for molecules with the greatest cross-sectional surface area and polarizability and that this selective mechanism increases as a function of LTGC processing temperature.[1]

References

 
WikiGenes - Universities