The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A calcium sensor in the sodium channel modulates cardiac excitability.

Sodium channels are principal molecular determinants responsible for myocardial conduction and maintenance of the cardiac rhythm. Calcium ions (Ca2+) have a fundamental role in the coupling of cardiac myocyte excitation and contraction, yet mechanisms whereby intracellular Ca2+ may directly modulate Na channel function have yet to be identified. Here we show that calmodulin (CaM), a ubiquitous Ca2+-sensing protein, binds to the carboxy-terminal 'IQ' domain of the human cardiac Na channel ( hH1) in a Ca2+-dependent manner. This binding interaction significantly enhances slow inactivation-a channel-gating process linked to life-threatening idiopathic ventricular arrhythmias. Mutations targeted to the IQ domain disrupted CaM binding and eliminated Ca2+/CaM-dependent slow inactivation, whereas the gating effects of Ca2+/CaM were restored by intracellular application of a peptide modelled after the IQ domain. A naturally occurring mutation (A1924T) in the IQ domain altered hH1 function in a manner characteristic of the Brugada arrhythmia syndrome, but at the same time inhibited slow inactivation induced by Ca2+/CaM, yielding a clinically benign (arrhythmia free) phenotype.[1]

References

  1. A calcium sensor in the sodium channel modulates cardiac excitability. Tan, H.L., Kupershmidt, S., Zhang, R., Stepanovic, S., Roden, D.M., Wilde, A.A., Anderson, M.E., Balser, J.R. Nature (2002) [Pubmed]
 
WikiGenes - Universities