The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Myocytes, Cardiac

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Myocytes, Cardiac


High impact information on Myocytes, Cardiac

  • Interestingly, HERG current is not blocked by drugs that specifically block IKr in cardiac myocytes [6].
  • This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions [7].
  • In cultures of cardiac myocytes, adiponectin activated AMPK and inhibited agonist-stimulated hypertrophy and ERK activation [8].
  • Adenoviral gene transfer of dominant-negative or wild-type PKC-alpha into cardiac myocytes enhances or reduces contractility, respectively [9].
  • Transplantation of 5 x 10(6) cells overexpressing Akt into the ischemic rat myocardium inhibited the process of cardiac remodeling by reducing intramyocardial inflammation, collagen deposition and cardiac myocyte hypertrophy, regenerated 80-90% of lost myocardial volume, and completely normalized systolic and diastolic cardiac function [10].

Chemical compound and disease context of Myocytes, Cardiac


Biological context of Myocytes, Cardiac


Anatomical context of Myocytes, Cardiac


Associations of Myocytes, Cardiac with chemical compounds


Gene context of Myocytes, Cardiac


Analytical, diagnostic and therapeutic context of Myocytes, Cardiac


  1. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Hirota, H., Chen, J., Betz, U.A., Rajewsky, K., Gu, Y., Ross, J., Müller, W., Chien, K.R. Cell (1999) [Pubmed]
  2. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Buitrago, M., Lorenz, K., Maass, A.H., Oberdorf-Maass, S., Keller, U., Schmitteckert, E.M., Ivashchenko, Y., Lohse, M.J., Engelhardt, S. Nat. Med. (2005) [Pubmed]
  3. Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant alpha-tropomyosins in adult cardiac myocytes. Michele, D.E., Albayya, F.P., Metzger, J.M. Nat. Med. (1999) [Pubmed]
  4. Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. Yamashita, N., Nishida, M., Hoshida, S., Kuzuya, T., Hori, M., Taniguchi, N., Kamada, T., Tada, M. J. Clin. Invest. (1994) [Pubmed]
  5. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. Yamamoto, S., Yang, G., Zablocki, D., Liu, J., Hong, C., Kim, S.J., Soler, S., Odashima, M., Thaisz, J., Yehia, G., Molina, C.A., Yatani, A., Vatner, D.E., Vatner, S.F., Sadoshima, J. J. Clin. Invest. (2003) [Pubmed]
  6. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Sanguinetti, M.C., Jiang, C., Curran, M.E., Keating, M.T. Cell (1995) [Pubmed]
  7. Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Day, S.M., Westfall, M.V., Fomicheva, E.V., Hoyer, K., Yasuda, S., La Cross, N.C., D'Alecy, L.G., Ingwall, J.S., Metzger, J.M. Nat. Med. (2006) [Pubmed]
  8. Adiponectin-mediated modulation of hypertrophic signals in the heart. Shibata, R., Ouchi, N., Ito, M., Kihara, S., Shiojima, I., Pimentel, D.R., Kumada, M., Sato, K., Schiekofer, S., Ohashi, K., Funahashi, T., Colucci, W.S., Walsh, K. Nat. Med. (2004) [Pubmed]
  9. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Braz, J.C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., Kimball, T.F., Lorenz, J.N., Nairn, A.C., Liggett, S.B., Bodi, I., Wang, S., Schwartz, A., Lakatta, E.G., DePaoli-Roach, A.A., Robbins, J., Hewett, T.E., Bibb, J.A., Westfall, M.V., Kranias, E.G., Molkentin, J.D. Nat. Med. (2004) [Pubmed]
  10. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Mangi, A.A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J.S., Dzau, V.J. Nat. Med. (2003) [Pubmed]
  11. Hypoxia and glucose independently regulate the beta-adrenergic receptor-adenylate cyclase system in cardiac myocytes. Rocha-Singh, K.J., Honbo, N.Y., Karliner, J.S. J. Clin. Invest. (1991) [Pubmed]
  12. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Nakamura, K., Fushimi, K., Kouchi, H., Mihara, K., Miyazaki, M., Ohe, T., Namba, M. Circulation (1998) [Pubmed]
  13. Altered function and structure of the heart in dogs with chronic elevation in plasma norepinephrine. Patel, M.B., Stewart, J.M., Loud, A.V., Anversa, P., Wang, J., Fiegel, L., Hintze, T.H. Circulation (1991) [Pubmed]
  14. Modulation of dihydropyridine-sensitive calcium channels in heart cells by fish oil fatty acids. Hallaq, H., Smith, T.W., Leaf, A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  15. Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy. Shohet, R.V., Kisanuki, Y.Y., Zhao, X.S., Siddiquee, Z., Franco, F., Yanagisawa, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  16. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Aoki, H., Sadoshima, J., Izumo, S. Nat. Med. (2000) [Pubmed]
  17. Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Vandecasteele, G., Eschenhagen, T., Scholz, H., Stein, B., Verde, I., Fischmeister, R. Nat. Med. (1999) [Pubmed]
  18. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Zorov, D.B., Filburn, C.R., Klotz, L.O., Zweier, J.L., Sollott, S.J. J. Exp. Med. (2000) [Pubmed]
  19. Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPase in cardiomyocytes. Long, X., Crow, M.T., Sollott, S.J., O'Neill, L., Menees, D.S., de Lourdes Hipolito, M., Boluyt, M.O., Asai, T., Lakatta, E.G. J. Clin. Invest. (1998) [Pubmed]
  20. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi, Y., Yazaki, Y. J. Clin. Invest. (1997) [Pubmed]
  21. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Gregorio, C.C., Weber, A., Bondad, M., Pennise, C.R., Fowler, V.M. Nature (1995) [Pubmed]
  22. Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. Thaik, C.M., Calderone, A., Takahashi, N., Colucci, W.S. J. Clin. Invest. (1995) [Pubmed]
  23. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. Calderone, A., Thaik, C.M., Takahashi, N., Chang, D.L., Colucci, W.S. J. Clin. Invest. (1998) [Pubmed]
  24. Adherence of neutrophils to canine cardiac myocytes in vitro is dependent on intercellular adhesion molecule-1. Smith, C.W., Entman, M.L., Lane, C.L., Beaudet, A.L., Ty, T.I., Youker, K., Hawkins, H.K., Anderson, D.C. J. Clin. Invest. (1991) [Pubmed]
  25. Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation. DelPrincipe, F., Egger, M., Niggli, E. Nat. Cell Biol. (1999) [Pubmed]
  26. A calcium sensor in the sodium channel modulates cardiac excitability. Tan, H.L., Kupershmidt, S., Zhang, R., Stepanovic, S., Roden, D.M., Wilde, A.A., Anderson, M.E., Balser, J.R. Nature (2002) [Pubmed]
  27. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., Hofmann, F. Nature (1982) [Pubmed]
  28. Modulation of calcium channels in cardiac and neuronal cells by an endogenous peptide. Callewaert, G., Hanbauer, I., Morad, M. Science (1989) [Pubmed]
  29. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes. Takahashi, N., Calderone, A., Izzo, N.J., Mäki, T.M., Marsh, J.D., Colucci, W.S. J. Clin. Invest. (1994) [Pubmed]
  30. The lethal effects of cytokine-induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor beta. Pinsky, D.J., Cai, B., Yang, X., Rodriguez, C., Sciacca, R.R., Cannon, P.J. J. Clin. Invest. (1995) [Pubmed]
  31. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. Jay, P.Y., Harris, B.S., Maguire, C.T., Buerger, A., Wakimoto, H., Tanaka, M., Kupershmidt, S., Roden, D.M., Schultheiss, T.M., O'Brien, T.X., Gourdie, R.G., Berul, C.I., Izumo, S. J. Clin. Invest. (2004) [Pubmed]
  32. Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. Entman, M.L., Youker, K., Shoji, T., Kukielka, G., Shappell, S.B., Taylor, A.A., Smith, C.W. J. Clin. Invest. (1992) [Pubmed]
  33. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. Frantz, S., Kobzik, L., Kim, Y.D., Fukazawa, R., Medzhitov, R., Lee, R.T., Kelly, R.A. J. Clin. Invest. (1999) [Pubmed]
  34. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. Leri, A., Franco, S., Zacheo, A., Barlucchi, L., Chimenti, S., Limana, F., Nadal-Ginard, B., Kajstura, J., Anversa, P., Blasco, M.A. EMBO J. (2003) [Pubmed]
  35. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. Go, L.O., Moschella, M.C., Watras, J., Handa, K.K., Fyfe, B.S., Marks, A.R. J. Clin. Invest. (1995) [Pubmed]
  36. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes. Belhassen, L., Kelly, R.A., Smith, T.W., Balligand, J.L. J. Clin. Invest. (1996) [Pubmed]
  37. A-kinase anchoring protein 100 (AKAP100) is localized in multiple subcellular compartments in the adult rat heart. Yang, J., Drazba, J.A., Ferguson, D.G., Bond, M. J. Cell Biol. (1998) [Pubmed]
  38. Evidence for the existence of renin in the heart. Dzau, V.J., Re, R.N. Circulation (1987) [Pubmed]
WikiGenes - Universities