The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

State and spectral properties of chloride oscillations in pollen.

Pollen tube growth is a dynamic system expressing a number of oscillating circuits. Our recent work identified a new circuit, oscillatory efflux of Cl(-) anion from the pollen tube apex. Cl(-) efflux is the first ion signal found to be coupled in phase with growth oscillations. Functional analyses indicate an active role for Cl(-) flux in pollen tube growth. In this report the dynamical properties of Cl(-) efflux are examined. Phase space analysis demonstrates that the system trajectory converges on a limit cycle. Fourier analysis reveals that two harmonic frequencies characterize normal growth. Cl(-) efflux is inhibited by the channel blocker DIDS, is stimulated by hypoosmotic treatment, and is antagonized by the signal encoded in inositol 3,4,5,6-tetrakisphosphate. These perturbations induce transitions of the limit cycle to new metastable states or cause system collapse to a static attractor centered near the origin. These perturbations also transform the spectral profile, inducing subharmonic frequencies, transitions to period doubling and tripling, superharmonic resonance, and chaos. These results indicate that Cl(-) signals in pollen tubes display features that are characteristic of active oscillators that carry frequency-encoded information. A reaction network of the Cl(-) oscillator coupled to two nonlinear feedback circuits that may drive pollen tube growth oscillations is considered.[1]

References

  1. State and spectral properties of chloride oscillations in pollen. Zonia, L., Feijó, J.A. Biophys. J. (2003) [Pubmed]
 
WikiGenes - Universities