The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression.

Pituitary tumor-transforming gene (PTTG) originally isolated from GH-secreting pituitary adenoma cells causes in vitro cell transformation, in vivo tumorigenesis, and induces basic fibroblast growth factor. These functions require an intact C-terminal proline-proline-serine-proline motif. PTTG1 is abundantly expressed in human pituitary tumors and plays a role in the early stages of experimental prolactinoma formation. We now determined direct effects of PTTG1 on hormonal phenotypes of functional pituitary tumor cells. Overexpression of PTTG1 C terminus (amino acids 147-202) containing intact proline-proline-serine-proline motifs in rat prolactin (PRL)- and GH- secreting GH3 cells markedly abrogates PRL mRNA expression by more than 90% (P < 0.001) and hormone levels (P < 0.001) and PRL promoter activity (P < 0.01) compared with control vector cells or to a PTTG1 C terminus mutant (P163A, S165Q, P166L, P170L, P172A, and P173L). Wild-type PTTG1 C-terminal transfectants formed smaller (P < 0.05) sc tumors in rats compared with control or mutated PTTG1 C-terminal transfectants. Estrogen (10 nm) treatment for 48 h partially restored PRL expression in stable wild-type PTTG1 C-terminal transfectants. These results indicate that targeting PTTG1- mediated signaling alters the hormonal phenotype in pituitary cells and disrupted PTTG1 action may be a potential subcellular therapeutic tool for repressing PRL hypersecretion.[1]


  1. Human pituitary tumor-transforming gene (PTTG1) motif suppresses prolactin expression. Horwitz, G.A., Miklovsky, I., Heaney, A.P., Ren, S.G., Melmed, S. Mol. Endocrinol. (2003) [Pubmed]
WikiGenes - Universities