The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

OBF1 enhances transcriptional potential of Oct1.

The POU transcription factors Oct1 and Oct2 bind to DNA in various monomer and dimer configurations. Depending on the DNA sequence to which they bind, the dimers are arranged in configurations that are either accessible (PORE sequence) or inaccessible (MORE sequence) to the B-cell-specific cofactor OBF1 (OcaB, Bob1). As shown previously, the MORE and related sequences (such as the heptamer/octamer motif) are found in immunoglobulin heavy chain promoters. Here we show that the expression of Osteopontin, which contains a PORE sequence in its enhancer region, depends on the presence of OBF1 in B cells. OBF1 alleviates DNA sequence requirements of the Oct1 dimer on PORE-related sequences in vitro. Furthermore, OBF1 stabilizes POU dimer-DNA interactions and overrides Oct1 interface mutations, which abolish PORE-mediated dimerization without OBF1. Our data indicate that the PORE-type Oct1 or Oct2 dimer, rather than the monomer, is the primary target of the cofactor OBF1. Based on our biochemical data, we propose a mode of OBF1-Oct1 dimer interaction, suggesting a novel arrangement of the subdomain connectivities.[1]


  1. OBF1 enhances transcriptional potential of Oct1. Lins, K., Reményi, A., Tomilin, A., Massa, S., Wilmanns, M., Matthias, P., Schöler, H.R. EMBO J. (2003) [Pubmed]
WikiGenes - Universities