The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Biosynthesis of structurally novel carotenoids in Escherichia coli.

Previously, we utilized in vitro evolution to alter the catalytic functions of several carotenoid enzymes and produce the novel carotenoids tetradehydrolycopene and torulene in Escherichia coli. Here we report on the successful extension of these pathways and the C(30) carotenoid diaponeurosporene pathway with additional carotenoid genes. Extension of the known acyclic C(30) pathway with C(40) carotenoid enzymes-spheroidene monooxygenase and lycopene cyclase-yielded new oxygenated acylic products and the unnatural cyclic C(30) diapotorulene, respectively. Extension of acyclic C(40) pathways with spheroidene monooxygenase generated novel oxygenated carotenoids including the violet phillipsiaxanthin. Extension of the torulene biosynthetic pathway with carotene hydroxylase, desaturase, glucosylase, and ketolase yielded new torulene derivatives. These results demonstrate the utility of extending an in vitro evolved central metabolic pathway with catalytically promiscuous downstream enzymes in order to generate structurally novel compounds.[1]

References

  1. Biosynthesis of structurally novel carotenoids in Escherichia coli. Lee, P.C., Momen, A.Z., Mijts, B.N., Schmidt-Dannert, C. Chem. Biol. (2003) [Pubmed]
 
WikiGenes - Universities