The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1L9K5O     (2R,3S,4S,5R,6R)-2- (hydroxymethyl)-6-[(6S...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Carotenoid

 

Psychiatry related information on Carotenoid

  • The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed [6].
  • Effect of alcohol consumption on plasma carotenoid concentrations in premenopausal women: a controlled dietary study [7].
  • METHODS: Quail were fed for 6 months with a commercial turkey diet (T group; n = 8), carotenoid-deficient diet (C- group; n = 8), or a carotenoid-deficient diet supplemented with 35 mg 3R,3'R-zeaxanthin per kilogram of food, (Z+ group; n = 8) [8].
  • CONCLUSIONS: The moderate change in dietary habits, e.g., the consumption of 330 mL of carotenoid-rich vegetable juices caused significant changes in the plasma carotenoid concentrations, indicating a high bioavailability of carotenoids from these processed vegetable products [9].
  • The specific importance of the particular representatives of the carotenoid antioxidants regarding skin defense mechanisms is of strong current interest [10].
 

High impact information on Carotenoid

  • Lack of response to background colour in Pieris brassicae pupae reared on carotenoid-free diet [11].
  • A total of 31 open reading frames that encode enzymes involved in bacteriochlorophyll/porphyrin biosynthesis, carotenoid biosynthesis, and photosynthetic electron transfer were identified in about 100 kilobase pairs of genomic sequence [12].
  • Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates [13].
  • The chloroplasts of most dinoflagellates are unusual in that they are surrounded by three membranes and contain the carotenoid peridinin [14].
  • This work also provides an explanation for the seemingly anomalous dependence of carotenoid band shifts on transmembrane potential and a generally useful approach for calibrating electric field-sensitive dyes that are widely used to probe potentials in biological systems [15].
 

Chemical compound and disease context of Carotenoid

 

Biological context of Carotenoid

  • By screening the Car phenotype of a large collection of transposon-induced mutants, we have identified a new car locus that has been named carD (carD1 for the mutant allele) [2].
  • Conversely, heterologous expression of the S. aureus carotenoid in the nonpigmented Streptococcus pyogenes confers enhanced oxidant and neutrophil resistance and increased animal virulence [4].
  • The cell-cycle kinetics of pigment assembly at the subcellular level mirror the kinetics of pigment synthesis at the cellular level, indicating that pigment synthesis not only provides chlorophyll and carotenoid for thylakoid biogenesis but may also serve as a critical rate-determinant to pigment assembly [20].
  • Highest synthesis and assembly rates are confined to the photoperiod (mid-to-late G1) and support chlorophyll and carotenoid accretion before M-phase [20].
  • Synthesis of the chlorophyll and the major carotenoid pigments and their assembly into thylakoid membrane have been studied throughout the 12-h light/12-h dark vegetative cell cycle of synchronous Chlamydomonas reinhardtii 137+ (wild-type) [20].
 

Anatomical context of Carotenoid

  • Canthaxanthin is a synthetic, non-provitamin A carotenoid that is highly lipid-soluble; it colors the skin by deposition in the epidermis and subcutaneous fat [21].
  • Compared with the wild-type (WT) bacterium, a S. aureus mutant with disrupted carotenoid biosynthesis is more susceptible to oxidant killing, has impaired neutrophil survival, and is less pathogenic in a mouse subcutaneous abscess model [4].
  • Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures [22].
  • At a lower bacterial inoculum, cylE also contributed to enhanced survival within phagocytes that was attributed to the ability of carotenoid to shield GBS from oxidative damage [23].
  • Eyespots are assembled from all three chloroplast membranes and carotenoid-filled granules, which form a sandwich structure overlaid by the tightly apposed plasma membrane [24].
 

Associations of Carotenoid with other chemical compounds

 

Gene context of Carotenoid

  • Opsin expression is extremely suppressed by carotenoid deprivation in Drosophila [30].
  • RPE65 is proposed to be a substrate chaperone but may have an enzymatic role because it is closely related to carotenoid oxygenases [31].
  • To determine the biochemical function of AtCCD7, the protein was expressed in carotenoid-accumulating strains of Escherichia coli [32].
  • (3R,3'S-meso)-Zeaxanthin, an optically inactive nondietary xanthophyll carotenoid present in the human macula, exhibited a strong induced CD spectrum in association with human macular XBP that was nearly identical to the CD spectrum induced by GSTP1 [33].
  • The carotenoid-bladder cancer association was not affected by the GSTM1, GSTT1 and GSTP1 genotypes [34].
 

Analytical, diagnostic and therapeutic context of Carotenoid

References

  1. Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action. Anwar, M., Khan, T.H., Prebble, J., Zagalsky, P.F. Nature (1977) [Pubmed]
  2. A genetic link between light response and multicellular development in the bacterium Myxococcus xanthus. Nicolás, F.J., Ruiz-Vázquez, R.M., Murillo, F.J. Genes Dev. (1994) [Pubmed]
  3. Serum carotenoids and coronary heart disease. The Lipid Research Clinics Coronary Primary Prevention Trial and Follow-up Study. Morris, D.L., Kritchevsky, S.B., Davis, C.E. JAMA (1994) [Pubmed]
  4. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. Liu, G.Y., Essex, A., Buchanan, J.T., Datta, V., Hoffman, H.M., Bastian, J.F., Fierer, J., Nizet, V. J. Exp. Med. (2005) [Pubmed]
  5. Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. Rosen, H., Klebanoff, S.J. J. Exp. Med. (1979) [Pubmed]
  6. The binding of Xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A specific requirement for carotenoids with a 3-hydroxy-beta-end group. Phillip, D., Hobe, S., Paulsen, H., Molnar, P., Hashimoto, H., Young, A.J. J. Biol. Chem. (2002) [Pubmed]
  7. Effect of alcohol consumption on plasma carotenoid concentrations in premenopausal women: a controlled dietary study. Forman, M.R., Beecher, G.R., Lanza, E., Reichman, M.E., Graubard, B.I., Campbell, W.S., Marr, T., Yong, L.C., Judd, J.T., Taylor, P.R. Am. J. Clin. Nutr. (1995) [Pubmed]
  8. Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail. Toyoda, Y., Thomson, L.R., Langner, A., Craft, N.E., Garnett, K.M., Nichols, C.R., Cheng, K.M., Dorey, C.K. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  9. Plasma concentrations of carotenoids in healthy volunteers after intervention with carotenoid-rich foods. Müller, H., Bub, A., Watzl, B., Rechkemmer, G. European journal of nutrition. (1999) [Pubmed]
  10. Noninvasive selective detection of lycopene and beta-carotene in human skin using Raman spectroscopy. Ermakov, I.V., Ermakova, M.R., Gellermann, W., Lademann, J. Journal of biomedical optics. (2004) [Pubmed]
  11. Lack of response to background colour in Pieris brassicae pupae reared on carotenoid-free diet. Rothschild, M., Gardiner, B., Valadon, G., Mummery, R. Nature (1975) [Pubmed]
  12. Molecular evidence for the early evolution of photosynthesis. Xiong, J., Fischer, W.M., Inoue, K., Nakahara, M., Bauer, C.E. Science (2000) [Pubmed]
  13. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Hofmann, E., Wrench, P.M., Sharples, F.P., Hiller, R.G., Welte, W., Diederichs, K. Science (1996) [Pubmed]
  14. A nuclear-encoded form II RuBisCO in dinoflagellates. Morse, D., Salois, P., Markovic, P., Hastings, J.W. Science (1995) [Pubmed]
  15. Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex. Gottfried, D.S., Steffen, M.A., Boxer, S.G. Science (1991) [Pubmed]
  16. Molecular breeding of carotenoid biosynthetic pathways. Schmidt-Dannert, C., Umeno, D., Arnold, F.H. Nat. Biotechnol. (2000) [Pubmed]
  17. Response of oral leukoplakia to beta-carotene. Garewal, H.S., Meyskens, F.L., Killen, D., Reeves, D., Kiersch, T.A., Elletson, H., Strosberg, A., King, D., Steinbronn, K. J. Clin. Oncol. (1990) [Pubmed]
  18. Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic ph in the cyanobacterium Synechocystis sp. PCC 6803. Ryu, J.Y., Song, J.Y., Lee, J.M., Jeong, S.W., Chow, W.S., Choi, S.B., Pogson, B.J., Park, Y.I. J. Biol. Chem. (2004) [Pubmed]
  19. Surface-enhanced resonance Raman scattering spectroscopy of bacterial photosynthetic membranes. The carotenoid of Rhodospirillum rubrum. Picorel, R., Holt, R.E., Cotton, T.M., Seibert, M. J. Biol. Chem. (1988) [Pubmed]
  20. Thylakoid membrane biogenesis in Chlamydomonas reinhardtii 137+. II. Cell-cycle variations in the synthesis and assembly of pigment. Janero, D.R., Barrnett, R. J. Cell Biol. (1982) [Pubmed]
  21. Aplastic anemia associated with canthaxanthin ingested for 'tanning' purposes. Bluhm, R., Branch, R., Johnston, P., Stein, R. JAMA (1990) [Pubmed]
  22. Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Deruère, J., Römer, S., d'Harlingue, A., Backhaus, R.A., Kuntz, M., Camara, B. Plant Cell (1994) [Pubmed]
  23. Sword and shield: linked group B streptococcal beta-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense. Liu, G.Y., Doran, K.S., Lawrence, T., Turkson, N., Puliti, M., Tissi, L., Nizet, V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  24. Eyespot placement and assembly in the green alga Chlamydomonas. Dieckmann, C.L. Bioessays (2003) [Pubmed]
  25. Prospective study of serum micronutrients and ovarian cancer. Helzlsouer, K.J., Alberg, A.J., Norkus, E.P., Morris, J.S., Hoffman, S.C., Comstock, G.W. J. Natl. Cancer Inst. (1996) [Pubmed]
  26. Metabolic engineering of astaxanthin production in tobacco flowers. Mann, V., Harker, M., Pecker, I., Hirschberg, J. Nat. Biotechnol. (2000) [Pubmed]
  27. Activator mutagenesis of the pink scutellum1/viviparous7 locus of maize. Singh, M., Lewis, P.E., Hardeman, K., Bai, L., Rose, J.K., Mazourek, M., Chomet, P., Brutnell, T.P. Plant Cell (2003) [Pubmed]
  28. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Norris, S.R., Barrette, T.R., DellaPenna, D. Plant Cell (1995) [Pubmed]
  29. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Park, H., Kreunen, S.S., Cuttriss, A.J., DellaPenna, D., Pogson, B.J. Plant Cell (2002) [Pubmed]
  30. Maturation of major Drosophila rhodopsin, ninaE, requires chromophore 3-hydroxyretinal. Ozaki, K., Nagatani, H., Ozaki, M., Tokunaga, F. Neuron (1993) [Pubmed]
  31. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Redmond, T.M., Poliakov, E., Yu, S., Tsai, J.Y., Lu, Z., Gentleman, S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  32. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. Schwartz, S.H., Qin, X., Loewen, M.C. J. Biol. Chem. (2004) [Pubmed]
  33. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. Bhosale, P., Larson, A.J., Frederick, J.M., Southwick, K., Thulin, C.D., Bernstein, P.S. J. Biol. Chem. (2004) [Pubmed]
  34. Carotenoids/vitamin C and smoking-related bladder cancer. Castelao, J.E., Yuan, J.M., Gago-Dominguez, M., Skipper, P.L., Tannenbaum, S.R., Chan, K.K., Watson, M.A., Bell, D.A., Coetzee, G.A., Ross, R.K., Yu, M.C. Int. J. Cancer (2004) [Pubmed]
  35. Carotenoid analyses of selected raw and cooked foods associated with a lower risk for cancer. Micozzi, M.S., Beecher, G.R., Taylor, P.R., Khachik, F. J. Natl. Cancer Inst. (1990) [Pubmed]
  36. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Bartley, G.E., Viitanen, P.V., Pecker, I., Chamovitz, D., Hirschberg, J., Scolnik, P.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  37. Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. Baliga, N.S., Pan, M., Goo, Y.A., Yi, E.C., Goodlett, D.R., Dimitrov, K., Shannon, P., Aebersold, R., Ng, W.V., Hood, L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
 
WikiGenes - Universities