The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protective effect of alpha-tocopherol-6-O-phosphate against ultraviolet B-induced damage in cultured mouse skin.

The ability of the novel water-soluble provitamin E, alpha-tocopherol-6-O-phosphate, to protect against ultraviolet B-induced damage in cultured mouse skin was investigated and compared with the protectiveness of alpha-tocopherol acetate in cultured mouse skin. Pretreatment of skin with 0.5% (9.4 mM) alpha-tocopherol-6-O-phosphate in medium for 3 h significantly prevented such photodamage as sunburn cell formation, DNA degradation, and lipid peroxidation, which were induced in control cultured skin by a single dose of ultraviolet B irradiation at 0 to 40 kJ per m2 (290-380 nm, maximum 312 nm). This protection was greater than that seen with alpha-tocopherol acetate, the most common provitamin E that is used in commercial human skin care products. The concentration of alpha-tocopherol in cultured skin pretreated with 0.5% alpha-tocopherol-6-O-phosphate rose to approximately two to three times that found in the control skin and the reduction in cutaneous alpha-tocopherol that was induced by ultraviolet irradiation was significantly inhibited. In the group pretreated with 0.5% alpha-tocopherol acetate, however, conversion of alpha-tocopherol acetate to alpha-tocopherol was not observed, although the level of provitamin incorporated into the cultured skin was the same as that for alpha-tocopherol-6-O-phosphate. These findings indicated that the enhanced ability of alpha-tocopherol-6-O-phosphate to protect against ultraviolet B-induced skin damage compared with alpha-tocopherol acetate may have been due to alpha-tocopherol-6-O-phosphate's conversion to alpha-tocopherol. Moreover, following pretreatment with a 0.5% alpha-tocopherol-6-O-phosphate, alpha-tocopherol-6-O-phosphate was incorporated into the human skin in a three-dimensional model and 5% of the incorporated alpha-tocopherol-6-O-phosphate was converted to alpha-tocopherol. These results suggest that treatment with the novel provitamin E, alpha-tocopherol-6-O-phosphate may be useful in preventing ultraviolet-induced human skin damage.[1]

References

  1. Protective effect of alpha-tocopherol-6-O-phosphate against ultraviolet B-induced damage in cultured mouse skin. Nakayama, S., Katoh, E.M., Tsuzuki, T., Kobayashi, S. J. Invest. Dermatol. (2003) [Pubmed]
 
WikiGenes - Universities