The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Alternative splicing as a mechanism for regulating 14-3-3 binding: interactions between hD53 (TPD52L1) and 14-3-3 proteins.

D52 (TPD52)-like proteins are coiled-coil motif-bearing proteins first identified through their expression in human breast carcinoma, which have been proposed to represent signalling intermediates and regulators of vesicle trafficking. D52-like gene transcripts are subject to alternative splicing, with sequences encoding a region termed insert 3 being affected in all three D52-like genes. We have now identified a 14-3-3 binding motif within one of two alternatively spliced exons encoding insert 3. As predicted from the distribution of 14-3-3 binding motifs in four hD52-like bait proteins tested, only a hD53 isoform encoding a 14-3-3 binding motif bound both 14-3-3beta and 14-3-3zeta preys in the yeast two-hybrid system. Since D53 proteins carrying 14-3-3 binding motifs are predicted to be widely expressed, polyclonal antisera were derived to specifically detect these isoforms. Using soluble protein extracts from breast carcinoma cell lines, pull-down assays replicated interactions between recombinant 14-3-3beta and 14-3-3zeta isoforms and exogenously expressed hD53, and co-immunoprecipitation analyses demonstrated interactions between endogenous 14-3-3 and both endogenously and exogenously-expressed hD53 protein. Co-expressed hD53 and 14-3-3 proteins were similarly demonstrated to co-localise within the cytoplasm of breast carcinoma cell lines. These results identify 14-3-3 proteins as partners for hD53, and alternative splicing as a mechanism for regulating 14-3-3 binding.[1]

References

 
WikiGenes - Universities