The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Synthesis of 3'-C-methyladenosine and 3'-C-methyluridine diphosphates and their interaction with the ribonucleoside diphosphate reductase from Corynebacterium nephridii.

Two nucleoside diphosphate analogs, 3'-C-methyl-ADP and 3'-C-methyl-UDP, have been tested as substrate and/or allosteric effectors using the adenosylcobalamin-dependent ribonucleoside diphosphate reductase of Corynebacterium nephridii. Neither analog was a substrate for the reductase. However, they did function as allosteric effectors and as inhibitors of the reduction of ADP and UDP, respectively. The nucleotide analogs did not stimulate the hydrogen exchange reaction between [5'-3H2]adenosylcobalamin and the solvent, indicating that the cleavage of the 3'-carbon-hydrogen bond is a prerequisite for the exchange reaction. A reinvestigation of the requirements for the exchange reaction revealed that the deoxyribonucleoside diphosphate products are very effective promoters of this reaction. Indeed, the deoxyribonucleoside diphosphates were found to be more effective in promoting the exchange reaction than the ribonucleoside diphosphate substrates. In contrast, the deoxyribonucleoside triphosphate effectors, dATP, dUTP, and dTTP, were only marginally effective as promoters of this reaction.[1]

References

 
WikiGenes - Universities