The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Efficient oxidative folding of conotoxins and the radiation of venomous cone snails.

The 500 different species of venomous cone snails (genus Conus) use small, highly structured peptides (conotoxins) for interacting with prey, predators, and competitors. These peptides are produced by translating mRNA from many genes belonging to only a few gene superfamilies. Each translation product is processed to yield a great diversity of different mature toxin peptides (approximately 50,000-100,000), most of which are 12-30 aa in length with two to three disulfide crosslinks. In vitro, forming the biologically relevant disulfide configuration is often problematic, suggesting that in vivo mechanisms for efficiently folding the diversity of conotoxins have been evolved by the cone snails. We demonstrate here that the correct folding of a Conus peptide is facilitated by a posttranslationally modified amino acid, gamma-carboxyglutamate. In addition, we show that multiple isoforms of protein disulfide isomerase are major soluble proteins in Conus venom duct extracts. The results provide evidence for the type of adaptations required before cone snails could systematically explore the specialized biochemical world of "microproteins" that other organisms have not been able to systematically access. Almost certainly, additional specialized adaptations for efficient microprotein folding are required.[1]

References

  1. Efficient oxidative folding of conotoxins and the radiation of venomous cone snails. Bulaj, G., Buczek, O., Goodsell, I., Jimenez, E.C., Kranski, J., Nielsen, J.S., Garrett, J.E., Olivera, B.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
 
WikiGenes - Universities