The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution.

A mutant of kanamycin nucleotidyltransferase (KNT) was previously created by directed evolution. This mutant, HTK, has 19 amino acid substitutions, which increase the thermostability by 20 degrees C. In this study, we have examined to what extent each mutation contributes to the increased stability and analyzed how the mutations affect the structure of KNT at 72 degrees C using molecular dynamics simulations. The effects of some mutations on the stability are simply additive, but those of others are cooperative. Mutations with large effects on the stability are introduced into the N-terminal domain, which appears to be less stable than the C-terminal domain. Results of the molecular dynamics simulations have indicated that the rigidity of the domain structures is increased by the mutations: at 72 degrees C, the intradomain fluctuations of HTK are decreased, and in turn, its interdomain motions are pronounced, whereas the structure of the preevolved KNT fluctuates randomly. Chemical modification experiments of cysteine residues have shown that the cysteine residues of HTK are less accessible to an SH reagent than those of the preevolved KNT. The present results suggest that the 19 mutations of HTK stabilize KNT by affecting the dynamic behavior of the structure of this enzyme without significantly changing its static overall structure.[1]


  1. Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution. Hoseki, J., Okamoto, A., Takada, N., Suenaga, A., Futatsugi, N., Konagaya, A., Taiji, M., Yano, T., Kuramitsu, S., Kagamiyama, H. Biochemistry (2003) [Pubmed]
WikiGenes - Universities