The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Zystein     2-amino-3-sulfanyl-propanoic acid

Synonyms: Hcys, DL-Cystein, DL-Cysteine, dl-Cysteina, CYSTEINE, DL-, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of carbocysteine

  • It is proposed that the adenovirus protease is a cysteine protease and that its activation by the peptide involves thiol-disulphide interchange, which serves to expose the active site cysteine [1].
  • A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis [2].
  • Measles virus editing provides an additional cysteine-rich protein [3].
  • In addition, a patient previously thought to have X-linked agammaglobulinemia was found to have an amino acid substitution on one chromosome at an invariant cysteine that is required for the intrachain disulfide bond and, on the other chromosome, a large deletion that included the immunoglobulin locus [4].
  • These results suggest that elevated levels of AGEs in tissues and serum of diabetic patients may inhibit endogenous antibacterial proteins by binding to this conserved AGE-binding cysteine-bounded domain 'ABCD' motif, thereby increasing susceptibility to bacterial infections in the diabetic population [5].
 

Psychiatry related information on carbocysteine

 

High impact information on carbocysteine

  • Recent evidence has indicated that the caspase family of cysteine proteases is a central effector in apoptotic cell death and is absolutely responsible for many of the morphological features of apoptosis [11].
  • Intracellularly, TRX/ADF is involved in the regulation of protein-protein or protein-nucleic acid interactions through the reduction/oxidation of protein cysteine residues [12].
  • Bcl-2 may combat the action of cysteine proteases thought to trigger apoptosis [13].
  • Apoptosis is executed by a subfamily of cysteine proteases known as caspases [14].
  • Prenylation is a class of lipid modification involving covalent addition of either farnesyl (15-carbon) or geranylgeranyl (20-carbon) isoprenoids to conserved cysteine residues at or near the C-terminus of proteins [15].
 

Chemical compound and disease context of carbocysteine

 

Biological context of carbocysteine

  • The mechanism of the RNA triphosphatase is similar to that of PTPs: the active site contains a conserved nucleophilic cysteine required for activity [21].
  • The amino acid sequences of these regions bear no resemblance to those found in other regulatory proteins with a similar arrangement of cysteine residues [22].
  • The posttranslational conversion of cysteine to C(alpha)-formylglycine in the catalytic site of mammalian sulfatases is deficient in the rare but devastating disorder multiple sulfatase deficiency (MSD) [23].
  • This domain contains a cysteine-rich zinc finger, and mutation of either of two cysteines abolishes binding to both sites [24].
  • Three newly-characterized missense mutations, replacing evolutionarily conserved cysteines or creating new cysteine codons, emphasize the functional importance of these sites [25].
 

Anatomical context of carbocysteine

 

Associations of carbocysteine with other chemical compounds

 

Gene context of carbocysteine

  • Apopain, a human counterpart of the nematode cysteine protease death-gene product, CED-3, has a key role in proteolytic events leading to apoptosis [36].
  • The extracellular cysteine-rich domain of the TNF-R is homologous to the nerve growth factor receptor and the B cell activation protein Bp50 [37].
  • Interestingly, CAP4 encodes a novel 55 kDa protein, designated FLICE, which has homology to both FADD and the ICE/CED-3 family of cysteine proteases [38].
  • Our results show that huntingtin is cleaved by cysteine proteases and suggest that HD might be a disorder of inappropriate apoptosis [36].
  • PML contains a cysteine-rich region present in a new family of apparent DNA-binding proteins that includes a regulator of the interleukin-2 receptor gene (Rpt-1) and the recombination-activating gene product (RAG-1) [39].
 

Analytical, diagnostic and therapeutic context of carbocysteine

References

  1. The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Webster, A., Hay, R.T., Kemp, G. Cell (1993) [Pubmed]
  2. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Shao, F., Merritt, P.M., Bao, Z., Innes, R.W., Dixon, J.E. Cell (2002) [Pubmed]
  3. Measles virus editing provides an additional cysteine-rich protein. Cattaneo, R., Kaelin, K., Baczko, K., Billeter, M.A. Cell (1989) [Pubmed]
  4. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. Yel, L., Minegishi, Y., Coustan-Smith, E., Buckley, R.H., Trübel, H., Pachman, L.M., Kitchingman, G.R., Campana, D., Rohrer, J., Conley, M.E. N. Engl. J. Med. (1996) [Pubmed]
  5. Antibacterial activity of lysozyme and lactoferrin is inhibited by binding of advanced glycation-modified proteins to a conserved motif. Li, Y.M., Tan, A.X., Vlassara, H. Nat. Med. (1995) [Pubmed]
  6. A cysteine 3340 substitution in the dystroglycan-binding domain of dystrophin associated with Duchenne muscular dystrophy, mental retardation and absence of the ERG b-wave. Lenk, U., Oexle, K., Voit, T., Ancker, U., Hellner, K.A., Speer, A., Hübner, C. Hum. Mol. Genet. (1996) [Pubmed]
  7. The lysosomal cysteine protease, cathepsin S, is increased in Alzheimer's disease and Down syndrome brain. An immunocytochemical study. Lemere, C.A., Munger, J.S., Shi, G.P., Natkin, L., Haass, C., Chapman, H.A., Selkoe, D.J. Am. J. Pathol. (1995) [Pubmed]
  8. Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l -cysteine. Yeh, M.W., Kaul, M., Zheng, J., Nottet, H.S., Thylin, M., Gendelman, H.E., Lipton, S.A. J. Immunol. (2000) [Pubmed]
  9. Variability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. Lerer, B., Macciardi, F., Segman, R.H., Adolfsson, R., Blackwood, D., Blairy, S., Del Favero, J., Dikeos, D.G., Kaneva, R., Lilli, R., Massat, I., Milanova, V., Muir, W., Noethen, M., Oruc, L., Petrova, T., Papadimitriou, G.N., Rietschel, M., Serretti, A., Souery, D., Van Gestel, S., Van Broeckhoven, C., Mendlewicz, J. Mol. Psychiatry (2001) [Pubmed]
  10. A peptide domain on gingipain R which confers immunity against Porphyromonas gingivalis infection in mice. Genco, C.A., Odusanya, B.M., Potempa, J., Mikolajczyk-Pawlinska, J., Travis, J. Infect. Immun. (1998) [Pubmed]
  11. The central effectors of cell death in the immune system. Rathmell, J.C., Thompson, C.B. Annu. Rev. Immunol. (1999) [Pubmed]
  12. Redox regulation of cellular activation. Nakamura, H., Nakamura, K., Yodoi, J. Annu. Rev. Immunol. (1997) [Pubmed]
  13. Regulation of lymphocyte survival by the bcl-2 gene family. Cory, S. Annu. Rev. Immunol. (1995) [Pubmed]
  14. Cytochrome C-mediated apoptosis. Jiang, X., Wang, X. Annu. Rev. Biochem. (2004) [Pubmed]
  15. Protein prenylation: molecular mechanisms and functional consequences. Zhang, F.L., Casey, P.J. Annu. Rev. Biochem. (1996) [Pubmed]
  16. Molecular interactions with mercury in the kidney. Zalups, R.K. Pharmacol. Rev. (2000) [Pubmed]
  17. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Padmanabhan, B., Tong, K.I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M.I., Kobayashi, A., Yokoyama, S., Yamamoto, M. Mol. Cell (2006) [Pubmed]
  18. Cysteine eliminates the feeder cell requirement for cultivation of Trypanosoma brucei bloodstream forms in vitro. Duszenko, M., Ferguson, M.A., Lamont, G.S., Rifkin, M.R., Cross, G.A. J. Exp. Med. (1985) [Pubmed]
  19. Induction of vascular leakage through release of bradykinin and a novel kinin by cysteine proteinases from Staphylococcus aureus. Imamura, T., Tanase, S., Szmyd, G., Kozik, A., Travis, J., Potempa, J. J. Exp. Med. (2005) [Pubmed]
  20. Mast cell dipeptidyl peptidase I mediates survival from sepsis. Mallen-St Clair, J., Pham, C.T., Villalta, S.A., Caughey, G.H., Wolters, P.J. J. Clin. Invest. (2004) [Pubmed]
  21. An RNA 5'-triphosphatase related to the protein tyrosine phosphatases. Takagi, T., Moore, C.R., Diehn, F., Buratowski, S. Cell (1997) [Pubmed]
  22. The erythroid-specific transcription factor Eryf1: a new finger protein. Evans, T., Felsenfeld, G. Cell (1989) [Pubmed]
  23. A major step on the road to understanding a unique posttranslational modification and its role in a genetic disease. Baenziger, J.U. Cell (2003) [Pubmed]
  24. Functional dissection and sequence of yeast HAP1 activator. Pfeifer, K., Kim, K.S., Kogan, S., Guarente, L. Cell (1989) [Pubmed]
  25. Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domain of mucins. Meindl, A., Berger, W., Meitinger, T., van de Pol, D., Achatz, H., Dörner, C., Haasemann, M., Hellebrand, H., Gal, A., Cremers, F. Nat. Genet. (1992) [Pubmed]
  26. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Dierks, T., Schmidt, B., Borissenko, L.V., Peng, J., Preusser, A., Mariappan, M., von Figura, K. Cell (2003) [Pubmed]
  27. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S., Sameshima, M., Hase, A., Seto, Y., Nagata, S. Cell (1991) [Pubmed]
  28. Mistranslation in E. coli. Edelmann, P., Gallant, J. Cell (1977) [Pubmed]
  29. Sodium-dependent cysteine transport in human red blood cells. Young, J.D., Wolowyk, M.W., Jones, S.E., Ellory, J.C. Nature (1979) [Pubmed]
  30. Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1. Shimizu, K., Birnbaum, D., Ruley, M.A., Fasano, O., Suard, Y., Edlund, L., Taparowsky, E., Goldfarb, M., Wigler, M. Nature (1983) [Pubmed]
  31. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Gyuris, J., Golemis, E., Chertkov, H., Brent, R. Cell (1993) [Pubmed]
  32. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Castilla, L.H., Couch, F.J., Erdos, M.R., Hoskins, K.F., Calzone, K., Garber, J.E., Boyd, J., Lubin, M.B., Deshano, M.L., Brody, L.C. Nat. Genet. (1994) [Pubmed]
  33. All ras proteins are polyisoprenylated but only some are palmitoylated. Hancock, J.F., Magee, A.I., Childs, J.E., Marshall, C.J. Cell (1989) [Pubmed]
  34. The cdc25 protein contains an intrinsic phosphatase activity. Dunphy, W.G., Kumagai, A. Cell (1991) [Pubmed]
  35. The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Zheng, W., Johnston, S.A., Joshua-Tor, L. Cell (1998) [Pubmed]
  36. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Goldberg, Y.P., Nicholson, D.W., Rasper, D.M., Kalchman, M.A., Koide, H.B., Graham, R.K., Bromm, M., Kazemi-Esfarjani, P., Thornberry, N.A., Vaillancourt, J.P., Hayden, M.R. Nat. Genet. (1996) [Pubmed]
  37. Molecular cloning and expression of a receptor for human tumor necrosis factor. Schall, T.J., Lewis, M., Koller, K.J., Lee, A., Rice, G.C., Wong, G.H., Gatanaga, T., Granger, G.A., Lentz, R., Raab, H. Cell (1990) [Pubmed]
  38. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death--inducing signaling complex. Muzio, M., Chinnaiyan, A.M., Kischkel, F.C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J.D., Zhang, M., Gentz, R., Mann, M., Krammer, P.H., Peter, M.E., Dixit, V.M. Cell (1996) [Pubmed]
  39. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Kakizuka, A., Miller, W.H., Umesono, K., Warrell, R.P., Frankel, S.R., Murty, V.V., Dmitrovsky, E., Evans, R.M. Cell (1991) [Pubmed]
  40. Selenocysteine. Stadtman, T.C. Annu. Rev. Biochem. (1996) [Pubmed]
  41. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Ranganathan, R., Lu, K.P., Hunter, T., Noel, J.P. Cell (1997) [Pubmed]
  42. Understanding the controversy over the identity of EDRF. Feelisch, M., te Poel, M., Zamora, R., Deussen, A., Moncada, S. Nature (1994) [Pubmed]
  43. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Kühnle, A., Linderoth, T.R., Hammer, B., Besenbacher, F. Nature (2002) [Pubmed]
 
WikiGenes - Universities