The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Computational elucidation of the transition state shape selectivity phenomenon.

The most commonly cited example of a transition state shape selective reaction, m-xylene disproportionation in zeolites, is examined to determine if the local spatial environment of a reaction can significantly alter selectivity. In the studied reaction, ZPE-corrected rate limiting energy barriers are 136 kJ/ mol for the methoxide-mediated pathway and 109 to 145 kJ/ mol for the diphenylmethane-mediated pathway. Both pathways are likely to contribute to selectivity and disfavor one product isomer (1,3,5-trimethylbenzene), but relative selectivity to the other two isomers varies with pore geometry, mechanistic pathway, and inclusion of entropic effects. Most importantly, study of one pathway in three different common zeolite framework types ( FAU, MFI, and MOR) allows explicit and practically oriented consideration of pore shape. Variation of the environment shape at the critical transition states is thus shown to affect the course of reaction. Barrier height shifts on the order of 10-20 kJ/ mol are achievable. Observed selectivities do not agree with the transition state characteristics calculated here and, hence, are most likely due to product shape selectivity. Further examination of the pathways highlights the importance of mechanistic steps that do not result in isomer-defining bonds and leads to a more robust definition of transition state shape selectivity.[1]

References

  1. Computational elucidation of the transition state shape selectivity phenomenon. Clark, L.A., Sierka, M., Sauer, J. J. Am. Chem. Soc. (2004) [Pubmed]
 
WikiGenes - Universities