The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Age-related relationships between muscle fat content and metabolic traits in growing rabbits.

This study was aimed at ascribing muscle fat accretion in growing rabbits to changes in several extra-muscular and intra-muscular metabolic pathways. At 10 wk or 20 wk of age (n = 8 per group), tissue lipid content and metabolic indicators of nutrient anabolic or catabolic pathways were simultaneously assessed in the liver, perirenal fat, the heart and the Longissimus lumborum (LL) muscle, together with plasma concentrations in energy-yielding metabolites. Lipid content significantly increased with age (P < or = 0.01) in the glycolytic LL muscle (+67%) and the oxidative heart (+30%). In the former muscle, it was statistically correlated (r2 = 0.68; P < 0.01) to the changes in the orientation of muscle metabolism towards an enhanced lipogenic capacity and a depressed capacity for fatty acid transport and nutrient oxidation, and to indications of lower availability in plasma glucose and triglycerides. In the heart, age-related fat accretion was positively associated (r2 = 0.48, P < 0.01) to intrinsic metabolic changes towards an enhanced lipogenic capacity, together with a lower availability in plasma glucose. Variables representative of cardiac catabolic capacity tended to be negatively correlated to fat content in the heart (r2 = 0.15, P = 0.07). In growing rabbits, muscle fat content variation was proven to result from a reciprocal balance between catabolic and anabolic fatty acid fluxes, rather than to be assigned to one specific energy metabolic pathway.[1]

References

  1. Age-related relationships between muscle fat content and metabolic traits in growing rabbits. Gondret, F., Hocquette, J.F., Herpin, P. Reprod. Nutr. Dev. (2004) [Pubmed]
 
WikiGenes - Universities