The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

dextrose     6-(hydroxymethyl)oxane- 2,3,4,5-tetrol

Synonyms: glucose, Hexose, Hexopyranose, mannopyranose, D-glucose, ...
 
 
 
T. Sparsø, T. Jørgensen, K. Borch-Johnsen, O. Pedersen, A. Albrechtsen, S. Madsbad, T. Lauritzen, B. Glaser, G. Andersen, M.A. Permutt, A. Sandbaek, J. Wasson, T. Hansen, Juan M. Pascual, Darryl C. De Vivo, Veronica Hinton, Kristin Engelstad, Ronald L. Van Heertum, Dong Wang, Chitra M. Saxena, David A. Jacobson, Louis H. Philipson, Andrey Kuznetsov, James P. Lopez, Shera Kash, Carina E. Ammälä, Annamaria Colao, Rosario Pivonello, Luigi M. Cavallo, Ludovica F. S. Grasso, Mariano Galdiero, Felice Esposito, Paolo Cappabianca, Gaetano Lombardi, Renata S. Auriemma, S.C. Collins, C.S. Olofsson, A. Salehi, L. Eliasson, P. Rorsman, S.S. Rasmussen, C. Glümer, T. Lauritzen, K. Borch-Johnsen, A. Sandbaek,  Aitman,  Gotoda,  Rahman,  Doré,  Wallace,  Imrie,  Flint,  Scott,  Trembling,  Kurtz,  Heath,  Kren,  Zidek,  Pravenec,  Evans,  Truman,  Ohki-Hamazaki,  Yamada,  Yamano,  Wada,  Ogura,  Wada,  Imaki,  Maeno,  Yamamoto,  Watase,  Kikuyama,  Cornell,  Raguse,  Pace,  Wieczorek,  Braach-Maksvytis,  King,  Osman, A. Natali, E. Muscelli, C. Palombo, C. Morgantini, F. Vittone, A. Casolaro, S. Baldi, E. Ferrannini, George Dimitriadis, Panayota Mitrou, Sotirios A. Raptis, Vaia Lambadiari, Eleni Boutati, Demosthenes Panagiotakos, Nikos Tountas, Eftychia Koukkou, Theofanis Economopoulos, Eirini Maratou, Manuel Romero-Gómez, Santiago Durán, Conrado M. Fernández-Rodríguez, Isabel Carmona, Raúl J. Andrade, Sonia Alonso, Ricard Solá, Moisés Diago, Ramón Perez, Ramón Planas, José A. Pons, Javier Salmerón, Rafael Barcena,  
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of galactose

 

Psychiatry related information on galactose

 

High impact information on galactose

 

Chemical compound and disease context of galactose

 

Biological context of galactose

  • Non-insulin dependent diabetes mellitus (NIDDM) affects more than 100 million people worldwide and is associated with severe metabolic defects, including peripheral insulin resistance, elevated hepatic glucose production, and inappropriate insulin secretion [31].
  • Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function [32].
  • As phosphorylation by glucokinase (GLK) appears to be the rate-limiting step for glucose catabolism in beta cells, this enzyme may be the glucose sensor [33].
  • Using kinetic modeling and experimental validation, we demonstrate that these feedback interactions together are important for (i) controlling the cell-to-cell variability of GAL gene expression and (ii) ensuring that cells rapidly switch to an induced state for galactose uptake [34].
  • Facilitated glucose transport in vertebrates is catalyzed by a family of carriers consisting of at least five functional isoforms with distinct tissue distributions, subcellular localizations and transport kinetics [35].
 

Anatomical context of galactose

 

Associations of galactose with other chemical compounds

  • Studies by and now show that resveratrol promotes longevity and improves glucose homeostasis in mice by stimulating the Sirt1-mediated deacetylation of the transcriptional coactivator PGC-1alpha [39].
  • In vitro, beta-cells display loss of control of insulin gene expression by glucose and impaired GSIS with a loss of first phase but preserved second phase of secretion, while the secretory response to non-glucidic nutrients or to D-glyceraldehyde is normal [40].
  • Ectopic expression of thyrotropin releasing hormone (TRH) receptors in liver modulates organ function to regulate blood glucose by TRH [41].
  • We have identified an enzyme in pea and Arabidopsis thaliana, L-galactose dehydrogenase, that catalyses oxidation of L-galactose to L-galactono-1,4-lactone [42].
  • Biomimetic functional models of the mononuclear copper enzyme galactose oxidase are presented that catalytically oxidize benzylic and allylic alcohols to aldehydes with O2 under mild conditions [43].
  • Glucose metabolic activity closely reflects response to gefitinib therapy [44].
  • These data indicate that glucose regulation of cis-element/trans-acting factor interaction is a key component of the mechanism by which glucose regulates insulin production [45].
  • Curtailing the liver activity of SCD1 was sufficient to lower the hepatic levels of oleyl-CoA and to recapitulate the effects of central glucose administration on VLDL secretion [46].
  • Somatostatin content was unaffected by glucose and lipids, but glucose-induced somatostatin secretion was reduced by approximately 50% following long-term exposure to either of the NEFA, regardless of whether the culture medium contained 4.5 or 15 mmol/l glucose [47].
  • This was verified by enhanced ethanol yields at 10 and 12 h (0.43 and 0.45 g ethanol/g glucose) compared to 2 h (0.32 g ethanol/g glucose) [48].
  • The response to acetylcholine was not affected by glucose ingestion in any group, while the response to SNP was attenuated, particularly in the IGT group [49].
  • Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance [50].
  • In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death [51].
  • Further, forcing drug-sensitive cells into glucose deprivation rendered them more resistant to lapatinib [52].
 

Gene context of galactose

 

Analytical, diagnostic and therapeutic context of galactose

  • We found no significant evidence for linkage when the families were analysed together, but strong evidence for linkage when families were classified according to mean insulin levels in affecteds (in oral glucose tolerance tests) [31].
  • Positron-emission tomography (PET) has identified specific regions of the brain in which the rate of glucose metabolism declines progressively in patients with probable Alzheimer's disease [66].
  • The genetic dissection of NIDDM allowed us to map up to six independently segregating loci predisposing to hyperglycaemia, glucose intolerance or altered insulin secretion, and a seventh locus implicated in body weight [67].
  • However, the adoption of biosensors for practical applications other than the measurement of blood glucose is currently limited by the expense, insensitivity and inflexibility of the available transduction methods [68].
  • A five-hour intravenous infusion of leptin into wild-type mice increased glucose turnover and glucose uptake, but decreased hepatic glycogen content [69].

References

  1. Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Aitman, T.J., Gotoda, T., Evans, A.L., Imrie, H., Heath, K.E., Trembling, P.M., Truman, H., Wallace, C.A., Rahman, A., Doré, C., Flint, J., Kren, V., Zidek, V., Kurtz, T.W., Pravenec, M., Scott, J. Nat. Genet. (1997) [Pubmed]
  2. Genetic analysis of non-insulin dependent diabetes mellitus in the GK rat. Galli, J., Li, L.S., Glaser, A., Ostenson, C.G., Jiao, H., Fakhrai-Rad, H., Jacob, H.J., Lander, E.S., Luthman, H. Nat. Genet. (1996) [Pubmed]
  3. Brain glucose uptake and unawareness of hypoglycemia in patients with insulin-dependent diabetes mellitus. Boyle, P.J., Kempers, S.F., O'Connor, A.M., Nagy, R.J. N. Engl. J. Med. (1995) [Pubmed]
  4. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Hanis, C.L., Boerwinkle, E., Chakraborty, R., Ellsworth, D.L., Concannon, P., Stirling, B., Morrison, V.A., Wapelhorst, B., Spielman, R.S., Gogolin-Ewens, K.J., Shepard, J.M., Williams, S.R., Risch, N., Hinds, D., Iwasaki, N., Ogata, M., Omori, Y., Petzold, C., Rietzch, H., Schröder, H.E., Schulze, J., Cox, N.J., Menzel, S., Boriraj, V.V., Chen, X., Lim, L.R., Lindner, T., Mereu, L.E., Wang, Y.Q., Xiang, K., Yamagata, K., Yang, Y., Bell, G.I. Nat. Genet. (1996) [Pubmed]
  5. Blood glucose monitoring in gestational diabetes mellitus. Buchanan, T.A., Kjos, S.L., Montoro, M.N. N. Engl. J. Med. (1996) [Pubmed]
  6. Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion. Joseph, J.W., Odegaard, M.L., Ronnebaum, S.M., Burgess, S.C., Muehlbauer, J., Sherry, A.D., Newgard, C.B. J. Biol. Chem. (2007) [Pubmed]
  7. Enhanced expression of asparagine synthetase under glucose-deprived conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cui, H., Darmanin, S., Natsuisaka, M., Kondo, T., Asaka, M., Shindoh, M., Higashino, F., Hamuro, J., Okada, F., Kobayashi, M., Nakagawa, K., Koide, H., Kobayashi, M. Cancer Res. (2007) [Pubmed]
  8. Brain glucose supply and the syndrome of infantile neuroglycopenia. Pascual, J.M., Wang, D., Hinton, V., Engelstad, K., Saxena, C.M., Van Heertum, R.L., De Vivo, D.C. Arch. Neurol. (2007) [Pubmed]
  9. Effect of sustained virological response to treatment on the incidence of abnormal glucose values in chronic hepatitis C. Romero-Gómez, M., Fernández-Rodríguez, C.M., Andrade, R.J., Diago, M., Alonso, S., Planas, R., Solá, R., Pons, J.A., Salmerón, J., Barcena, R., Perez, R., Carmona, I., Durán, S. J. Hepatol. (2008) [Pubmed]
  10. Type of preadmission glucose-lowering treatment and prognosis among patients hospitalised with myocardial infarction: a nationwide follow-up study. Horsdal, H.T., Johnsen, S.P., Søndergaard, F., Rungby, J. Diabetologia (2008) [Pubmed]
  11. Impact of somatostatin analogs versus surgery on glucose metabolism in acromegaly: results of a 5-year observational, open, prospective study. Colao, A., Auriemma, R.S., Galdiero, M., Cappabianca, P., Cavallo, L.M., Esposito, F., Grasso, L.F., Lombardi, G., Pivonello, R. J. Clin. Endocrinol. Metab. (2009) [Pubmed]
  12. Endocytosis. Mukherjee, S., Ghosh, R.N., Maxfield, F.R. Physiol. Rev. (1997) [Pubmed]
  13. Thinking globally and acting locally with TOR. Arsham, A.M., Neufeld, T.P. Curr. Opin. Cell Biol. (2006) [Pubmed]
  14. Inverse association of dietary fat with development of ischemic stroke in men. Gillman, M.W., Cupples, L.A., Millen, B.E., Ellison, R.C., Wolf, P.A. JAMA (1997) [Pubmed]
  15. Thiamine before glucose to prevent Wernicke encephalopathy: examining the conventional wisdom. Hack, J.B., Hoffman, R.S. JAMA (1998) [Pubmed]
  16. A fatty acid- dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. Dobbins, R.L., Chester, M.W., Stevenson, B.E., Daniels, M.B., Stein, D.T., McGarry, J.D. J. Clin. Invest. (1998) [Pubmed]
  17. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Hanson, R.W., Reshef, L. Annu. Rev. Biochem. (1997) [Pubmed]
  18. Metabolic coupling factors in pancreatic beta-cell signal transduction. Newgard, C.B., McGarry, J.D. Annu. Rev. Biochem. (1995) [Pubmed]
  19. Transcriptional regulation of gene expression during adipocyte differentiation. MacDougald, O.A., Lane, M.D. Annu. Rev. Biochem. (1995) [Pubmed]
  20. Insights into cellular energy metabolism from transgenic mice. Koretsky, A.P. Physiol. Rev. (1995) [Pubmed]
  21. Role of leptin in the neuroendocrine response to fasting. Ahima, R.S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., Flier, J.S. Nature (1996) [Pubmed]
  22. Biology of cachexia. Tisdale, M.J. J. Natl. Cancer Inst. (1997) [Pubmed]
  23. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. James, J.H., Fang, C.H., Schrantz, S.J., Hasselgren, P.O., Paul, R.J., Fischer, J.E. J. Clin. Invest. (1996) [Pubmed]
  24. Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity. Baron, A.D., Zhu, J.S., Zhu, J.H., Weldon, H., Maianu, L., Garvey, W.T. J. Clin. Invest. (1995) [Pubmed]
  25. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. Niehues, R., Hasilik, M., Alton, G., Körner, C., Schiebe-Sukumar, M., Koch, H.G., Zimmer, K.P., Wu, R., Harms, E., Reiter, K., von Figura, K., Freeze, H.H., Harms, H.K., Marquardt, T. J. Clin. Invest. (1998) [Pubmed]
  26. Fasting hyperglycemia impairs glucose- but not insulin-mediated suppression of glucagon secretion. Abdul-Ghani, M., DeFronzo, R.A. J. Clin. Endocrinol. Metab. (2007) [Pubmed]
  27. Cathepsin L activity controls adipogenesis and glucose tolerance. Yang, M., Zhang, Y., Pan, J., Sun, J., Liu, J., Libby, P., Sukhova, G.K., Doria, A., Katunuma, N., Peroni, O.D., Guerre-Millo, M., Kahn, B.B., Clement, K., Shi, G.P. Nat. Cell Biol. (2007) [Pubmed]
  28. Determinants of progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screened population: 3 year follow-up in the ADDITION study, Denmark. Rasmussen, S.S., Glümer, C., Sandbaek, A., Lauritzen, T., Borch-Johnsen, K. Diabetologia (2008) [Pubmed]
  29. Short-term exercise improves beta-cell function and insulin resistance in older people with impaired glucose tolerance. Bloem, C.J., Chang, A.M. J. Clin. Endocrinol. Metab. (2008) [Pubmed]
  30. Insulin-stimulated rates of glucose uptake in muscle in hyperthyroidism: the importance of blood flow. Dimitriadis, G., Mitrou, P., Lambadiari, V., Boutati, E., Maratou, E., Koukkou, E., Panagiotakos, D., Tountas, N., Economopoulos, T., Raptis, S.A. J. Clin. Endocrinol. Metab. (2008) [Pubmed]
  31. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Mahtani, M.M., Widén, E., Lehto, M., Thomas, J., McCarthy, M., Brayer, J., Bryant, B., Chan, G., Daly, M., Forsblom, C., Kanninen, T., Kirby, A., Kruglyak, L., Munnelly, K., Parkkonen, M., Reeve-Daly, M.P., Weaver, A., Brettin, T., Duyk, G., Lander, E.S., Groop, L.C. Nat. Genet. (1996) [Pubmed]
  32. Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. O'Rahilly, S., Gray, H., Humphreys, P.J., Krook, A., Polonsky, K.S., White, A., Gibson, S., Taylor, K., Carr, C. N. Engl. J. Med. (1995) [Pubmed]
  33. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Grupe, A., Hultgren, B., Ryan, A., Ma, Y.H., Bauer, M., Stewart, T.A. Cell (1995) [Pubmed]
  34. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Ramsey, S.A., Smith, J.J., Orrell, D., Marelli, M., Petersen, T.W., de Atauri, P., Bolouri, H., Aitchison, J.D. Nat. Genet. (2006) [Pubmed]
  35. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Seidner, G., Alvarez, M.G., Yeh, J.I., O'Driscoll, K.R., Klepper, J., Stump, T.S., Wang, D., Spinner, N.B., Birnbaum, M.J., De Vivo, D.C. Nat. Genet. (1998) [Pubmed]
  36. Linkage and association between insulin-dependent diabetes mellitus (IDDM) susceptibility and markers near the glucokinase gene on chromosome 7. Rowe, R.E., Wapelhorst, B., Bell, G.I., Risch, N., Spielman, R.S., Concannon, P. Nat. Genet. (1995) [Pubmed]
  37. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Santer, R., Schneppenheim, R., Dombrowski, A., Götze, H., Steinmann, B., Schaub, J. Nat. Genet. (1997) [Pubmed]
  38. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Stephens, L., Smrcka, A., Cooke, F.T., Jackson, T.R., Sternweis, P.C., Hawkins, P.T. Cell (1994) [Pubmed]
  39. In vino veritas: a tale of two sirt1s? Koo, S.H., Montminy, M. Cell (2006) [Pubmed]
  40. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Guillam, M.T., Hümmler, E., Schaerer, E., Yeh, J.I., Birnbaum, M.J., Beermann, F., Schmidt, A., Dériaz, N., Thorens, B., Wu, J.Y. Nat. Genet. (1997) [Pubmed]
  41. Ectopic expression of thyrotropin releasing hormone (TRH) receptors in liver modulates organ function to regulate blood glucose by TRH. Wolff, G., Mastrangeli, A., Heinflink, M., Falck-Pedersen, E., Gershengorn, M.C., Crystal, R.G. Nat. Genet. (1996) [Pubmed]
  42. The biosynthetic pathway of vitamin C in higher plants. Wheeler, G.L., Jones, M.A., Smirnoff, N. Nature (1998) [Pubmed]
  43. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. Wang, Y., DuBois, J.L., Hedman, B., Hodgson, K.O., Stack, T.D. Science (1998) [Pubmed]
  44. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Su, H., Bodenstein, C., Dumont, R.A., Seimbille, Y., Dubinett, S., Phelps, M.E., Herschman, H., Czernin, J., Weber, W. Clin. Cancer Res. (2006) [Pubmed]
  45. A cis-element in the 5' untranslated region of the preproinsulin mRNA (ppIGE) is required for glucose regulation of proinsulin translation. Wicksteed, B., Uchizono, Y., Alarcon, C., McCuaig, J.F., Shalev, A., Rhodes, C.J. Cell Metab. (2007) [Pubmed]
  46. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Lam, T.K., Gutierrez-Juarez, R., Pocai, A., Bhanot, S., Tso, P., Schwartz, G.J., Rossetti, L. Nat. Med. (2007) [Pubmed]
  47. Long-term exposure of mouse pancreatic islets to oleate or palmitate results in reduced glucose-induced somatostatin and oversecretion of glucagon. Collins, S.C., Salehi, A., Eliasson, L., Olofsson, C.S., Rorsman, P. Diabetologia (2008) [Pubmed]
  48. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation. Pham, T.K., Wright, P.C. J. Proteome Res. (2008) [Pubmed]
  49. Effects of glucose tolerance on the changes provoked by glucose ingestion in microvascular function. Natali, A., Baldi, S., Vittone, F., Muscelli, E., Casolaro, A., Morgantini, C., Palombo, C., Ferrannini, E. Diabetologia (2008) [Pubmed]
  50. PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells. Zehetner, J., Danzer, C., Collins, S., Eckhardt, K., Gerber, P.A., Ballschmieter, P., Galvanovskis, J., Shimomura, K., Ashcroft, F.M., Thorens, B., Rorsman, P., Krek, W. Genes Dev. (2008) [Pubmed]
  51. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Graham, N.A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., Vivanco, I., Teitell, M.A., Wu, H., Ribas, A., Lo, R.S., Mellinghoff, I.K., Mischel, P.S., Graeber, T.G. Mol. Syst. Biol. (2012) [Pubmed]
  52. The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Komurov, K., Tseng, J.T., Muller, M., Seviour, E.G., Moss, T.J., Yang, L., Nagrath, D., Ram, P.T. Mol. Syst. Biol. (2012) [Pubmed]
  53. Neuronal PTP1B regulates body weight, adiposity and leptin action. Bence, K.K., Delibegovic, M., Xue, B., Gorgun, C.Z., Hotamisligil, G.S., Neel, B.G., Kahn, B.B. Nat. Med. (2006) [Pubmed]
  54. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Ohki-Hamazaki, H., Watase, K., Yamamoto, K., Ogura, H., Yamano, M., Yamada, K., Maeno, H., Imaki, J., Kikuyama, S., Wada, E., Wada, K. Nature (1997) [Pubmed]
  55. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p. Zenke, F.T., Engles, R., Vollenbroich, V., Meyer, J., Hollenberg, C.P., Breunig, K.D. Science (1996) [Pubmed]
  56. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Inagaki, N., Gonoi, T., Clement, J.P., Namba, N., Inazawa, J., Gonzalez, G., Aguilar-Bryan, L., Seino, S., Bryan, J. Science (1995) [Pubmed]
  57. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cho, Y.H., Yoo, S.D., Sheen, J. Cell (2006) [Pubmed]
  58. Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Jacobson, D.A., Kuznetsov, A., Lopez, J.P., Kash, S., Ammälä, C.E., Philipson, L.H. Cell Metab. (2007) [Pubmed]
  59. Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Zhao, Y., Altman, B.J., Coloff, J.L., Herman, C.E., Jacobs, S.R., Wieman, H.L., Wofford, J.A., Dimascio, L.N., Ilkayeva, O., Kelekar, A., Reya, T., Rathmell, J.C. Mol. Cell. Biol. (2007) [Pubmed]
  60. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Wofford, J.A., Wieman, H.L., Jacobs, S.R., Zhao, Y., Rathmell, J.C. Blood (2008) [Pubmed]
  61. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. Denechaud, P.D., Bossard, P., Lobaccaro, J.M., Millatt, L., Staels, B., Girard, J., Postic, C. J. Clin. Invest. (2008) [Pubmed]
  62. Impact of polymorphisms in WFS1 on prediabetic phenotypes in a population-based sample of middle-aged people with normal and abnormal glucose regulation. Sparsø, T., Andersen, G., Albrechtsen, A., Jørgensen, T., Borch-Johnsen, K., Sandbaek, A., Lauritzen, T., Wasson, J., Permutt, M.A., Glaser, B., Madsbad, S., Pedersen, O., Hansen, T. Diabetologia (2008) [Pubmed]
  63. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. Jacobs, S.R., Herman, C.E., Maciver, N.J., Wofford, J.A., Wieman, H.L., Hammen, J.J., Rathmell, J.C. J. Immunol. (2008) [Pubmed]
  64. Glucose regulates transcription in yeast through a network of signaling pathways. Zaman, S., Lippman, S.I., Schneper, L., Slonim, N., Broach, J.R. Mol. Syst. Biol. (2009) [Pubmed]
  65. Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice. Cantley, J., Selman, C., Shukla, D., Abramov, A.Y., Forstreuter, F., Esteban, M.A., Claret, M., Lingard, S.J., Clements, M., Harten, S.K., Asare-Anane, H., Batterham, R.L., Herrera, P.L., Persaud, S.J., Duchen, M.R., Maxwell, P.H., Withers, D.J. J. Clin. Invest. (2009) [Pubmed]
  66. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. Reiman, E.M., Caselli, R.J., Yun, L.S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S.N., Osborne, D. N. Engl. J. Med. (1996) [Pubmed]
  67. Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Gauguier, D., Froguel, P., Parent, V., Bernard, C., Bihoreau, M.T., Portha, B., James, M.R., Penicaud, L., Lathrop, M., Ktorza, A. Nat. Genet. (1996) [Pubmed]
  68. A biosensor that uses ion-channel switches. Cornell, B.A., Braach-Maksvytis, V.L., King, L.G., Osman, P.D., Raguse, B., Wieczorek, L., Pace, R.J. Nature (1997) [Pubmed]
  69. Acute stimulation of glucose metabolism in mice by leptin treatment. Kamohara, S., Burcelin, R., Halaas, J.L., Friedman, J.M., Charron, M.J. Nature (1997) [Pubmed]
 
WikiGenes - Universities