The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Simvastatin suppresses coronary artery endothelial tube formation by disrupting Ras/Raf/ ERK signaling.

Since we recently demonstrated that high-density lipoprotein induced human coronary artery endothelial cell (HCEC) tube formation through Ras/Raf/ ERK (extracellular-signal-regulated kinase) activation [Arterioscler. Thromb. Vasc. Biol. 23 (2003) 802], it is possible that lipid-lowering agents such as statins, which reduce the prenylation of Ras, could decrease such tube formation. Therefore, we investigated whether this event occurs through inhibition of the Ras/Raf/ ERK pathway. We developed an in vitro model of EC tube formation on a matrix gel. Simvastatin inhibited serum-induced endothelial tube formation after 18 h. The inhibition of ERK activity suppressed serum-induced tube formation. Farnesylpyrophosphate (Fpp), which translocates Ras from the cytoplasm to the cell membrane, rescued this inhibition. In addition, farnesyltransferase I inhibitor, which inhibits Ras farnesylation, and dominant-negative Ras (N17) also inhibited serum-induced tube formation. Although Fpp activated Ras assessed by a Ras pull-down assay and phospho(p)-ERK1/2, Fpp-induced p-ERK1/2 activation was not inhibited by simvastatin. In conclusion, simvastatin-induced Ras/Raf/ ERK inactivation is a potent signal in the anti-angiogenic phenotype of HCECs. Fpp counteracted simvastatin-induced Ras/Raf/ ERK inactivation.[1]


WikiGenes - Universities