The system design of UV-assisted catalytic oxidation process--degradation of 2,4-D.
Unlike the conventional first- or second-order model, a novel approach to design for the removal of 2,4-dichlorophenoxy (2,4-D) by the UV-catalytic oxidation process (UVCOP) was investigated. Two distinctive parameters, initial decay rate and maximum oxidative capacity, were characterized. By using these parameters, the performance of the degradation of 2,4-D by UVCOP regarding to the reagent dosages could be successfully predicted. Low concentrations of ferrous ion was found to be a rate-limiting factor for the process while the dosage of hydrogen peroxide was concluded as a dominant species in determining the maximum oxidation capacities. This information can be used to optimize the treatment process and achieve the expected performance target; an "optimal-dose model" was developed accordingly. The model is an intelligent and useful tool to evaluate the optimal doses of hydrogen peroxide with the minimum dose of ferrous ion, which leads to a better design of the treatment process.[1]References
- The system design of UV-assisted catalytic oxidation process--degradation of 2,4-D. Chu, W., Chan, K.H., Kwan, C.Y., Lee, C.K. Chemosphere (2004) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg