The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Monosan     2-(2,4- dichlorophenoxy)ethanoic acid

Synonyms: Agrotect, Deherban, Fernesta, Herbidal, Planotox, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Decamine


Psychiatry related information on Decamine


High impact information on Decamine


Chemical compound and disease context of Decamine


Biological context of Decamine

  • The degradation of phosphatidylinositol (PI) in such membranes is enhanced in the presence of the synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D), measured as the hydrolysis of PI or by an enhancement of [3H]inositol incorporation into membrane-associated PI stimulated by Mn2+, but not dependent upon added CTP, Mg2+, or diglyceride [19].
  • The growth regulator 2,4-D (2,4-dichlorophenoxyacetic acid) has been used to investigate the inter-relationship between cell elongation and cell division in carrot suspension cells [20].
  • In vivo recombinants of pYG1010 and a cloned tfdS gene rescued the 2,4-D phenotype, indicating that TfdS is a positive regulator of tfdA expression, but not for tfdCDEF expression [3].
  • We show that arcA3 transcription is induced at cell cycle entry but not directly by the 2,4-D treatment [21].
  • Despite several thorough in vitro and in vivo animal studies, no experimental evidence exists supporting the theory that 2,4-D or any of its salts and esters damages DNA under physiologic conditions [2].

Anatomical context of Decamine


Associations of Decamine with other chemical compounds


Gene context of Decamine


Analytical, diagnostic and therapeutic context of Decamine


  1. Case-control study of canine malignant lymphoma: positive association with dog owner's use of 2,4-dichlorophenoxyacetic acid herbicides. Hayes, H.M., Tarone, R.E., Cantor, K.P., Jessen, C.R., McCurnin, D.M., Richardson, R.C. J. Natl. Cancer Inst. (1991) [Pubmed]
  2. Review of 2,4-dichlorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Garabrant, D.H., Philbert, M.A. Crit. Rev. Toxicol. (2002) [Pubmed]
  3. Genetic and molecular analysis of a regulatory region of the herbicide 2,4-dichlorophenoxyacetate catabolic plasmid pJP4. You, I.S., Ghosal, D. Mol. Microbiol. (1995) [Pubmed]
  4. Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2, 4-dichlorophenoxyacetate. Leveau, J.H., König, F., Füchslin, H., Werlen, C., Van Der Meer, J.R. Mol. Microbiol. (1999) [Pubmed]
  5. 2,4-Dichlorophenoxyacetic acid (2,4-D) reduces acetylcholinesterase activity in rat muscle. Bernard, P.A., Toyoshima, E., Eccles, C.U., Mayer, R.F., Johnson, K.P., Max, S.R. Exp. Neurol. (1985) [Pubmed]
  6. Severe mental retardation and multiple congenital anomalies of uncertain cause after extreme parental exposure to 2,4-D. Casey, P.H., Collie, W.R. J. Pediatr. (1984) [Pubmed]
  7. Formulation and food deprivation affects 2,4-D neurobehavioral toxicity in rats. Schulze, G.E. Neurotoxicology and teratology. (1987) [Pubmed]
  8. Altered behavioral responses in 2,4-dichlorophenoxyacetic acid treated and amphetamine challenged rats. Evangelista de Duffard, A.M., Bortolozzi, A., Duffard, R.O. Neurotoxicology (1995) [Pubmed]
  9. 2,4-D plasmids and persistence. Pemberton, J.M., Fisher, P.R. Nature (1977) [Pubmed]
  10. Canine malignant lymphoma and 2,4-dichlorophenoxyacetic acid herbicides. Sternberg, S.S. J. Natl. Cancer Inst. (1992) [Pubmed]
  11. A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Richmond, T.A., Bleecker, A.B. Plant Cell (1999) [Pubmed]
  12. parB: an auxin-regulated gene encoding glutathione S-transferase. Takahashi, Y., Nagata, T. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  13. Lignification in cell suspension cultures of Pinus taeda. In situ characterization of a gymnosperm lignin. Eberhardt, T.L., Bernards, M.A., He, L., Davin, L.B., Wooten, J.B., Lewis, N.G. J. Biol. Chem. (1993) [Pubmed]
  14. Ascorbic acid-dependent turnover and reactivation of 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase using thiophenoxyacetic acid. Saari, R.E., Hausinger, R.P. Biochemistry (1998) [Pubmed]
  15. Novel 2,4-dichlorophenoxyacetic acid degradation genes from oligotrophic Bradyrhizobium sp. strain HW13 isolated from a pristine environment. Kitagawa, W., Takami, S., Miyauchi, K., Masai, E., Kamagata, Y., Tiedje, J.M., Fukuda, M. J. Bacteriol. (2002) [Pubmed]
  16. Characterization of two cDNAs (ERD11 and ERD13) for dehydration-inducible genes that encode putative glutathione S-transferases in Arabidopsis thaliana L. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K. FEBS Lett. (1993) [Pubmed]
  17. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Pilot, G., Gaymard, F., Mouline, K., Chérel, I., Sentenac, H. Plant Mol. Biol. (2003) [Pubmed]
  18. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Roane, T.M., Josephson, K.L., Pepper, I.L. Appl. Environ. Microbiol. (2001) [Pubmed]
  19. Phosphatidylinositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone 2,4-dichlorophenoxyacetic acid. Morré, D.J., Gripshover, B., Monroe, A., Morré, J.T. J. Biol. Chem. (1984) [Pubmed]
  20. The mode of action of 2,4-D in counteracting the elongation of carrot cells grown in culture. Lloyd, C.W., Lowe, S.B., Peace, G.W. J. Cell. Sci. (1980) [Pubmed]
  21. Is arcA3 a possible mediator in the signal transduction pathway during agonist cell cycle arrest by salicylic acid and UV irradiation? Perennes, C., Glab, N., Guglieni, B., Doutriaux, M.P., Phan, T.H., Planchais, S., Bergounioux, C. J. Cell. Sci. (1999) [Pubmed]
  22. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. Imaoka, T., Kusuhara, H., Adachi-Akahane, S., Hasegawa, M., Morita, N., Endou, H., Sugiyama, Y. J. Am. Soc. Nephrol. (2004) [Pubmed]
  23. Purification and characterization of two cellulases from auxin-treated pea epicotyls. Byrne, H., Christou, N.V., Verma, D.P., Maclachlan, G.A. J. Biol. Chem. (1975) [Pubmed]
  24. A nuclear casein kinase 2 activity is involved in early events of transcriptional activation induced by salicylic acid in tobacco. Hidalgo, P., Garretón, V., Berríos, C.G., Ojeda, H., Jordana, X., Holuigue, L. Plant Physiol. (2001) [Pubmed]
  25. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Parry, G., Delbarre, A., Marchant, A., Swarup, R., Napier, R., Perrot-Rechenmann, C., Bennett, M.J. Plant J. (2001) [Pubmed]
  26. Mutations in an Auxin Receptor Homolog AFB5 and in SGT1b Confer Resistance to Synthetic Picolinate Auxins and Not to 2,4-Dichlorophenoxyacetic Acid or Indole-3-Acetic Acid in Arabidopsis. Walsh, T.A., Neal, R., Merlo, A.O., Honma, M., Hicks, G.R., Wolff, K., Matsumura, W., Davies, J.P. Plant Physiol. (2006) [Pubmed]
  27. Two-dimensional electrophoresis of Cereus peruvianus (Cactaceae) callus tissue proteins. Mangolin, C.A., Ottoboni, L.M., Machado, M.F. Electrophoresis (1999) [Pubmed]
  28. Melatonin decreases the oxidative stress produced by 2,4-dichlorophenoxyacetic acid in rat cerebellar granule cells. Bongiovanni, B., De Lorenzi, P., Ferri, A., Konjuh, C., Rassetto, M., Evangelista de Duffard, A.M., Cardinali, D.P., Duffard, R. Neurotox. Res (2007) [Pubmed]
  29. ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Chen, L., Ortiz-Lopez, A., Jung, A., Bush, D.R. Plant Physiol. (2001) [Pubmed]
  30. Adaptation of Saccharomyces cerevisiae to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Msn2p- and Msn4p-regulated genes: important role of SPI1. Simões, T., Teixeira, M.C., Fernandes, A.R., Sá-Correia, I. Appl. Environ. Microbiol. (2003) [Pubmed]
  31. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Laemmli, C.M., Leveau, J.H., Zehnder, A.J., van der Meer, J.R. J. Bacteriol. (2000) [Pubmed]
  32. Coordinate expression of ribosomal protein mRNAs following auxin treatment of soybean hypocotyls. Gantt, J.S., Key, J.L. J. Biol. Chem. (1985) [Pubmed]
  33. Site-directed mutagenesis of 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase. Identification of residues involved in metallocenter formation and substrate binding. Hogan, D.A., Smith, S.R., Saari, E.A., McCracken, J., Hausinger, R.P. J. Biol. Chem. (2000) [Pubmed]
  34. A small acidic protein 1 (SMAP1) mediates responses of the Arabidopsis root to the synthetic auxin 2,4-dichlorophenoxyacetic acid. Rahman, A., Nakasone, A., Chhun, T., Ooura, C., Biswas, K.K., Uchimiya, H., Tsurumi, S., Baskin, T.I., Tanaka, A., Oono, Y. Plant J. (2006) [Pubmed]
WikiGenes - Universities