The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing.

The N-terminal alanine residues of the silencing protein Sir3 and of Orc1 are acetylated by the NatA Nalpha-acetyltransferase. Mutations demonstrate that the N terminus of Sir3 is important for its function. Sir3 and, perhaps, also Orc1 are the NatA substrates whose lack of acetylation in ard1 and nat1 mutants explains the silencing defect of those mutants.[1]

References

  1. Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing. Wang, X., Connelly, J.J., Wang, C.L., Sternglanz, R. Genetics (2004) [Pubmed]
 
WikiGenes - Universities