The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Acetylation


Psychiatry related information on Acetylation


High impact information on Acetylation

  • Among the well-known covalent modifications of histones, the reversible acetylation of internal lysine residues in histone amino-terminal domains has long been positively linked to transcriptional activation [7].
  • Thus, the Dbp transcription cycle is paralleled by binding of BMAL1 and CLOCK to multiple extra- and intragenic E boxes, acetylation of Lys9 of histone H3, trimethylation of Lys4 of histone H3 and a reduction of histone density [8].
  • The transcription elongation factor SII is a major component of CTEA and strongly synergizes with p300 (histone acetylation) at a step subsequent to preinitiation complex formation [9].
  • SPT10, a putative acetyltransferase, is required for cell cycle-specific K56 acetylation at histone genes [10].
  • Efficient deposition of H2A.Z is further promoted by a specific pattern of histone H3 and H4 tail acetylation and the bromodomain protein Bdf1, a component of the Swr1 remodeling complex that deposits H2A.Z [11].

Chemical compound and disease context of Acetylation


Biological context of Acetylation


Anatomical context of Acetylation


Associations of Acetylation with chemical compounds

  • These results suggest that the modification of either histones or other unidentified regulatory proteins by acetylation may play a role in the mechanism of estrogen-mediated gene induction [27].
  • CBP enhances transcriptional activities via histone acetylation and the recruitment of additional co-activators such as SRC (steroid coactivator)-1 (ref. 9). To identify its physiological functions using a loss-of-function mutant, we analyzed CBP-deficient mice [28].
  • These data are consistent with presystemic inhibition of platelets by aspirin and suggest that biochemical "selectivity" might be enhanced by slow administration of very low doses of aspirin, thereby optimizing conditions for cumulative, presystemic acetylation of platelet cyclooxygenase and inhibition of thromboxane formation [29].
  • Nicotinamide (Vitamin B3) inhibits an NAD-dependent p53 deacetylation induced by Sir2alpha, and also enhances the p53 acetylation levels in vivo [30].
  • Acetylsalicylic acid (aspirin) inhibits prostanoid synthesis by irreversible acetylation of fatty acid cyclooxygenase (EC [31].

Gene context of Acetylation

  • Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation [32].
  • These data indicate that opposing effects of Sir2p and Sas2p on acetylation of H4-Lys16 maintain the boundary at telomeric heterochromatin [33].
  • Treatment with specific inhibitors shows that levels of acetylation of BCL6 are controlled by both HDAC-dependent and SIR2-dependent pathways [34].
  • Our findings suggest that targeted histone acetylation at specific promoters by TAF(II)250 may be involved in mechanisms by which TFIID gains access to transcriptionally repressed chromatin [35].
  • Our results represent the first description of loss of histone acetylation at a specific locus in human disease, and advance understanding of the mechanism of FMR1 transcriptional silencing [36].

Analytical, diagnostic and therapeutic context of Acetylation


  1. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Taylor, J.P., Taye, A.A., Campbell, C., Kazemi-Esfarjani, P., Fischbeck, K.H., Min, K.T. Genes Dev. (2003) [Pubmed]
  2. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. Usui, T., Preiss, J.C., Kanno, Y., Yao, Z.J., Bream, J.H., O'Shea, J.J., Strober, W. J. Exp. Med. (2006) [Pubmed]
  3. Acetylation control of the retinoblastoma tumour-suppressor protein. Chan, H.M., Krstic-Demonacos, M., Smith, L., Demonacos, C., La Thangue, N.B. Nat. Cell Biol. (2001) [Pubmed]
  4. STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Ray, S., Boldogh, I., Brasier, A.R. Gastroenterology (2005) [Pubmed]
  5. Intergenic transcription is not required in Th2 cells to maintain histone acetylation and transcriptional permissiveness at the Il4-Il13 locus. Baguet, A., Sun, X., Arroll, T., Krumm, A., Bix, M. J. Immunol. (2005) [Pubmed]
  6. Preparation of sulfoacetate derivatives of cellulose by direct esterification. Chauvelon, G., Buléon, A., Thibault, J.F., Saulnier, L. Carbohydr. Res. (2003) [Pubmed]
  7. Histone acetyltransferases. Roth, S.Y., Denu, J.M., Allis, C.D. Annu. Rev. Biochem. (2001) [Pubmed]
  8. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Ripperger, J.A., Schibler, U. Nat. Genet. (2006) [Pubmed]
  9. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Guermah, M., Palhan, V.B., Tackett, A.J., Chait, B.T., Roeder, R.G. Cell (2006) [Pubmed]
  10. Acetylation in histone H3 globular domain regulates gene expression in yeast. Xu, F., Zhang, K., Grunstein, M. Cell (2005) [Pubmed]
  11. Histone variant H2A.Z marks the 5' ends of both active and inactive genes in euchromatin. Raisner, R.M., Hartley, P.D., Meneghini, M.D., Bao, M.Z., Liu, C.L., Schreiber, S.L., Rando, O.J., Madhani, H.D. Cell (2005) [Pubmed]
  12. A histone deacetylase inhibitor potentiates retinoid receptor action in embryonal carcinoma cells. Minucci, S., Horn, V., Bhattacharyya, N., Russanova, V., Ogryzko, V.V., Gabriele, L., Howard, B.H., Ozato, K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  13. p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Amini, S., Mameli, G., Del Valle, L., Skowronska, A., Reiss, K., Gelman, B.B., White, M.K., Khalili, K., Sawaya, B.E. Mol. Cell. Biol. (2005) [Pubmed]
  14. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Aron, J.L., Parthun, M.R., Marcucci, G., Kitada, S., Mone, A.P., Davis, M.E., Shen, T., Murphy, T., Wickham, J., Kanakry, C., Lucas, D.M., Reed, J.C., Grever, M.R., Byrd, J.C. Blood (2003) [Pubmed]
  15. Acetylation phenotype in colorectal carcinoma. Ilett, K.F., David, B.M., Detchon, P., Castleden, W.M., Kwa, R. Cancer Res. (1987) [Pubmed]
  16. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Guo, F., Sigua, C., Tao, J., Bali, P., George, P., Li, Y., Wittmann, S., Moscinski, L., Atadja, P., Bhalla, K. Cancer Res. (2004) [Pubmed]
  17. Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Kurdistani, S.K., Robyr, D., Tavazoie, S., Grunstein, M. Nat. Genet. (2002) [Pubmed]
  18. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., Thanos, D. Cell (2000) [Pubmed]
  19. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., Weinberg, R.A. Cell (2001) [Pubmed]
  20. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Brownell, J.E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D.G., Roth, S.Y., Allis, C.D. Cell (1996) [Pubmed]
  21. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Freitas-Junior, L.H., Hernandez-Rivas, R., Ralph, S.A., Montiel-Condado, D., Ruvalcaba-Salazar, O.K., Rojas-Meza, A.P., Mâncio-Silva, L., Leal-Silvestre, R.J., Gontijo, A.M., Shorte, S., Scherf, A. Cell (2005) [Pubmed]
  22. HDAC6 is a microtubule-associated deacetylase. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., Yao, T.P. Nature (2002) [Pubmed]
  23. Platelet secretory products inhibit lipoprotein metabolism in macrophages. Phillips, D.R., Arnold, K., Innerarity, T.L. Nature (1985) [Pubmed]
  24. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Pearson, M., Carbone, R., Sebastiani, C., Cioce, M., Fagioli, M., Saito, S., Higashimoto, Y., Appella, E., Minucci, S., Pandolfi, P.P., Pelicci, P.G. Nature (2000) [Pubmed]
  25. Genetic evidence for transmembrane acetylation by lysosomes. Bame, K.J., Rome, L.H. Science (1986) [Pubmed]
  26. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Méjat, A., Ramond, F., Bassel-Duby, R., Khochbin, S., Olson, E.N., Schaeffer, L. Nat. Neurosci. (2005) [Pubmed]
  27. Butyrate and related inhibitors of histone deacetylation block the induction of egg white genes by steroid hormones. McKnight, G.S., Hager, L., Palmiter, R.D. Cell (1980) [Pubmed]
  28. Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Yamauchi, T., Oike, Y., Kamon, J., Waki, H., Komeda, K., Tsuchida, A., Date, Y., Li, M.X., Miki, H., Akanuma, Y., Nagai, R., Kimura, S., Saheki, T., Nakazato, M., Naitoh, T., Yamamura, K., Kadowaki, T. Nat. Genet. (2002) [Pubmed]
  29. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. Pedersen, A.K., FitzGerald, G.A. N. Engl. J. Med. (1984) [Pubmed]
  30. Negative control of p53 by Sir2alpha promotes cell survival under stress. Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., Gu, W. Cell (2001) [Pubmed]
  31. Aspirin causes short-lived inhibition of bradykinin-stimulated prostacyclin production in man. Heavey, D.J., Barrow, S.E., Hickling, N.E., Ritter, J.M. Nature (1985) [Pubmed]
  32. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Chakravarti, D., Ogryzko, V., Kao, H.Y., Nash, A., Chen, H., Nakatani, Y., Evans, R.M. Cell (1999) [Pubmed]
  33. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Suka, N., Luo, K., Grunstein, M. Nat. Genet. (2002) [Pubmed]
  34. Acetylation inactivates the transcriptional repressor BCL6. Bereshchenko, O.R., Gu, W., Dalla-Favera, R. Nat. Genet. (2002) [Pubmed]
  35. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Mizzen, C.A., Yang, X.J., Kokubo, T., Brownell, J.E., Bannister, A.J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S.L., Kouzarides, T., Nakatani, Y., Allis, C.D. Cell (1996) [Pubmed]
  36. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Coffee, B., Zhang, F., Warren, S.T., Reines, D. Nat. Genet. (1999) [Pubmed]
  37. Global histone acetylation and deacetylation in yeast. Vogelauer, M., Wu, J., Suka, N., Grunstein, M. Nature (2000) [Pubmed]
  38. Evaluating electrostatic contributions to binding with the use of protein charge ladders. Gao, J., Mammen, M., Whitesides, G.M. Science (1996) [Pubmed]
  39. Changes in histone acetylation during mouse oocyte meiosis. Kim, J.M., Liu, H., Tazaki, M., Nagata, M., Aoki, F. J. Cell Biol. (2003) [Pubmed]
  40. Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile x syndrome. Coffee, B., Zhang, F., Ceman, S., Warren, S.T., Reines, D. Am. J. Hum. Genet. (2002) [Pubmed]
  41. N-acetylation pharmacogenetics: a gene deletion causes absence of arylamine N-acetyltransferase in liver of slow acetylator rabbits. Blum, M., Grant, D.M., Demierre, A., Meyer, U.A. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
WikiGenes - Universities