The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The [URE3] yeast prion results from protein aggregates that differ from amyloid filaments formed in vitro.

The [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo. Here we showed that the biochemical characteristics of these two species differ. Protease digestions of Ure2p filaments and soluble Ure2p are comparable when analyzed by Coomassie staining as by Western blot. However, this finding does not explain the pattern specifically observed in [URE3] strains. Antibodies raised against the C-terminal part of Ure2p revealed the existence of proteolysis sites efficiently cleaved when [URE3], but not wild-type crude extracts, were submitted to limited proteolysis. The same antibodies lead to an equivalent digestion pattern when recombinant Ure2p (either soluble or amyloid) was analyzed in the same way. These results strongly suggest that aggregated Ure2p in [URE3] yeast cells is different from the amyloid filaments generated in vitro.[1]

References

  1. The [URE3] yeast prion results from protein aggregates that differ from amyloid filaments formed in vitro. Ripaud, L., Maillet, L., Immel-Torterotot, F., Durand, F., Cullin, C. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities