The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits.

Exercise training elicits a metabolic and cardiovascular response that underlies fitness. The molecular mechanisms that orchestrate this adaptive response and secure the wide-ranging gains of a regimented exercise program are poorly understood. Formed through association of the Kir6.2 pore and the sulfonylurea receptor, the stress-responsive ATP-sensitive K(+) channels (K(ATP) channels), with their metabolic-sensing capability and broad tissue expression, are potential candidates for integrating the systemic adaptive response to repetitive exercise. Here, the responses of mice lacking functional Kir6.2-containing K(ATP) channels (Kir6.2-KO) were compared with wild-type controls following a 28-day endurance swimming protocol. While chronic aquatic training resulted in lighter, leaner, and fitter wild-type animals, the Kir6.2-KO manifested less augmentation in exercise capacity and lacked metabolic improvement in body fat composition and glycemic handling with myocellular defects. Moreover, the repetitive stress of swimming unmasked a survival disadvantage in the Kir6.2-KO, associated with pathologic calcium-dependent structural damage in the heart and impaired cardiac performance. Thus, Kir6.2-containing K(ATP) channel activity is required for attainment of the physiologic benefits of exercise training without injury.[1]

References

  1. ATP-sensitive K+ channel knockout compromises the metabolic benefit of exercise training, resulting in cardiac deficits. Kane, G.C., Behfar, A., Yamada, S., Perez-Terzic, C., O'Cochlain, F., Reyes, S., Dzeja, P.P., Miki, T., Seino, S., Terzic, A. Diabetes (2004) [Pubmed]
 
WikiGenes - Universities