Importance of solubility in the sample preparation of poly(ethylene terephthalate) for MALDI TOFMS.
The role of solubility in the sample preparation process for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is demonstrated for oligomeric and medium molar mass poly(ethylene terephthalate) (PET). For low molar mass oligomers (PET-1), minor discrimination effects were observed when the sample was not completely in solution. MALDI spectra of medium molar mass PET, representative of the entire molar mass distribution, were obtained only when a good solvent for PET was used, such as 1,1,1,3,3,3-hexafluoro-2-propanol (commonly referred to as HFIP), as the sample preparation solvent and dithranol as the matrix. The azeotropic composition of 70:30 CH(2)Cl(2)/HFIP better solubilizes the more nonpolar matrixes, which enables more latitude in selecting sample preparation conditions than pure HFIP. Segregation effects were observed when the azeotrope mixture was diluted with tetrahydrofuran, resulting in large molar mass distribution discrimination effects in the MALDI spectra. Dilution with CH(2)Cl(2) resulted in a significant decrease in the overall signal intensity for the entire polymer distribution. With each attempt to dilute the azeotrope, the sample after solvent evaporation was visibly heterogeneous, which resulted in shot-to-shot variability. Both examples demonstrate the importance of constant solvent composition during solvent evaporation. The compatibility of matrix and polymer was explored using relative HPLC retention times. Consistent with previous work in our laboratories, it was found that the matrix/polymer combination that has the closest match of retention time resulted in the best MALDI signal intensity.[1]References
- Importance of solubility in the sample preparation of poly(ethylene terephthalate) for MALDI TOFMS. Hoteling, A.J., Mourey, T.H., Owens, K.G. Anal. Chem. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg