The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Tephthol     terephthalic acid

Synonyms: P-Phthelate, S-LOP, p-Phthalate, SureCN1655, HSDB 834, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of terephthalic acid

 

Psychiatry related information on terephthalic acid

  • In analogy, in man-made fibres thermal shrinkage induces changes in mechanical properties attributable to the entropy-driven disorientation of 'unfrozen' molecular chains (as in polyethylene terephthalate) or the 'broken' intermolecular hydrogen bonds (as in nylons) [6].
 

High impact information on terephthalic acid

 

Chemical compound and disease context of terephthalic acid

 

Biological context of terephthalic acid

  • Similarly the 1254-cm-1 feature is unaffected, while the 1266-cm-1 feature is shifted to approximately 1290 cm-1 when inhibitors such as phenolates or terephthalate bind to the active site [16].
  • Analysis of the nucleotide sequence for the terephthalate degradation operon located genes for a regulatory protein, a transport protein, a dioxygenase large subunit, a dioxygenase small subunit, a cis-dihydrodiol dehydrogenase, and a reductase [12].
  • The pad and pat genes are contained on a catabolic island that is duplicated on plasmids pRHL1 and pRHL2 and includes predicted terephthalate catabolic genes (tpa) [17].
  • Metabolism of DEHT by the rat appears to occur via rapid hydrolysis of both ester linkages to give two moles of 2-ethylhexanol and one mole of terephthalic acid [18].
  • In presence of methanogenic granular biomass, high terephthalate removal capacities were obtained in these reactors (15 g-COD/L . day) after approximately 125 days of operation [19].
 

Anatomical context of terephthalic acid

 

Associations of terephthalic acid with other chemical compounds

  • The Eyring activation parameters of the E/Z and Z/E isomerization barriers in the presence of the stationary phase BP21 (poly(ethylene glycol) terephthalate terminated) were determined by temperature-dependent experiments between 80 and 90 degrees C for 1 and 70 and 130 degrees C for 2 [24].
  • The pH dependence of terephthalate binding as well as the spectral similarities of the dicarboxylate complexes to the ESO2 intermediate provides further evidence for the suggestion that this intermediate is a tightly bound enzyme-product complex [25].
  • Finally the spectra of the 4-hydroxybenzoate and terephthalate complexes demonstrate the presence of two tyrosines coordinated to the active-site iron as suggested by others; these tyrosines have different vCO's and excitation profiles [25].
  • The genes encoding the putative TER operon and degradation of protocatechuate, with the meta cleavage pathway, were attributed a chromosomal location in strains T-2 and PSB-4 [26].
  • In vitro genotoxicity of dimethyl terephthalate [27].
 

Gene context of terephthalic acid

 

Analytical, diagnostic and therapeutic context of terephthalic acid

References

  1. Polyethylene terephthalate and polyurethane coatings for endovascular stents: preliminary results in canine experimental arteriovenous fistulas. Schellhammer, F., Walter, M., Berlis, A., Bloss, H.G., Wellens, E., Schumacher, M. Radiology. (1999) [Pubmed]
  2. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Sasoh, M., Masai, E., Ishibashi, S., Hara, H., Kamimura, N., Miyauchi, K., Fukuda, M. Appl. Environ. Microbiol. (2006) [Pubmed]
  3. An in vitro model based on cell monolayers grown on the underside of large- pore filters in bicameral chambers for studying thyrocyte-lymphocyte interactions. Estienne, V., Brisbarre, N., Blanchin, S., Durand-Gorde, J.M., Carayon, P., Ruf, J. Am. J. Physiol., Cell Physiol. (2004) [Pubmed]
  4. Biodegradation of the phthalates and their esters by bacteria. Keyser, P., Pujar, B.G., Eaton, R.W., Ribbons, D.W. Environ. Health Perspect. (1976) [Pubmed]
  5. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., Kida, K. Int. J. Syst. Evol. Microbiol. (2003) [Pubmed]
  6. Relationships between supercontraction and mechanical properties of spider silk. Liu, Y., Shao, Z., Vollrath, F. Nature materials. (2005) [Pubmed]
  7. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Brodbeck, W.G., Patel, J., Voskerician, G., Christenson, E., Shive, M.S., Nakayama, Y., Matsuda, T., Ziats, N.P., Anderson, J.M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Mast cells mediate acute inflammatory responses to implanted biomaterials. Tang, L., Jennings, T.A., Eaton, J.W. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene terephthalate stents. Murphy, J.G., Schwartz, R.S., Edwards, W.D., Camrud, A.R., Vlietstra, R.E., Holmes, D.R. Circulation (1992) [Pubmed]
  10. Studies on the mechanism of the photo-induced DNA damage in the presence of acridizinium salts-involvement of singlet oxygen and an unusual source for hydroxyl radicals. Bohne, C., Faulhaber, K., Giese, B., Häfner, A., Hofmann, A., Ihmels, H., Köhler, A.K., Perä, S., Schneider, F., Sheepwash, M.A. J. Am. Chem. Soc. (2005) [Pubmed]
  11. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)] x [HO(2)C-C(6)H(4)-CO(2)H](x) x H(2)O(y). Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., Férey, G. J. Am. Chem. Soc. (2002) [Pubmed]
  12. Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Wang, Y.Z., Zhou, Y., Zylstra, G.J. Environ. Health Perspect. (1995) [Pubmed]
  13. Minimum leak size determination, under laboratory and commercial conditions, for bacterial entry into polymeric trays used for shelf-stable food packaging. Ravishankar, S., Maks, N.D., Teo, A.Y., Strassheim, H.E., Pascall, M.A. J. Food Prot. (2005) [Pubmed]
  14. Elevated prostaglandin E2 level via cPLA2--COX-2--mPGES-1 pathway involved in bladder carcinogenesis induced by terephthalic acid-calculi in Wistar rats. Shi, Y., Cui, L., Dai, G., Chen, J., Pan, H., Song, L., Cheng, S., Wang, X. Prostaglandins Leukot. Essent. Fatty Acids (2006) [Pubmed]
  15. Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Wang, Y.P., Gu, J.D. Ecotoxicology (2006) [Pubmed]
  16. Resonance Raman studies of the protocatechuate 3,4-dioxygenase from Brevibacterium fuscum. Siu, D.C., Orville, A.M., Lipscomb, J.D., Ohlendorf, D.H., Que, L. Biochemistry (1992) [Pubmed]
  17. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. Patrauchan, M.A., Florizone, C., Dosanjh, M., Mohn, W.W., Davies, J., Eltis, L.D. J. Bacteriol. (2005) [Pubmed]
  18. Peroxisome induction studies on di(2-ethylhexyl)terephthalate. Topping, D.C., Ford, G.P., Evans, J.G., Lake, B.G., O'Donoghue, J.L., Lockhart, H.B. Toxicology and industrial health. (1987) [Pubmed]
  19. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor. Kleerebezem, R., Beckers, J., Hulshoff Pol, L.W., Lettinga, G. Biotechnol. Bioeng. (2005) [Pubmed]
  20. Glycoconjugate mediated endothelial cell adhesion to Dacron polyester film. Ozaki, C.K., Phaneuf, M.D., Hong, S.L., Quist, W.C., LoGerfo, F.W. J. Vasc. Surg. (1993) [Pubmed]
  21. Bone anchored sling for the treatment of post-prostatectomy incontinence. Madjar, S., Jacoby, K., Giberti, C., Wald, M., Halachmi, S., Issaq, E., Moskovitz, B., Beyar, M., Nativ, O. J. Urol. (2001) [Pubmed]
  22. Streaming potential in cylindrical pores of poly(ethylene terephthalate) track-etched membranes: variation of apparent zeta potential with pore radius. Déjardin, P., Vasina, E.N., Berezkin, V.V., Sobolev, V.D., Volkov, V.I. Langmuir : the ACS journal of surfaces and colloids. (2005) [Pubmed]
  23. Biocompatibility of polyethylene terephthalate (Trevira hochfest) augmentation device in repair of the anterior cruciate ligament. Seitz, H., Marlovits, S., Schwendenwein, I., Müller, E., Vécsei, V. Biomaterials (1998) [Pubmed]
  24. Simulation of elution profiles for two-dimensional dynamic gas chromatographic experiments. Trapp, O., Shellie, R., Marriott, P., Schurig, V. Anal. Chem. (2003) [Pubmed]
  25. Resonance Raman studies on protocatechuate 3,4-dioxygenase-inhibitor complexes. Que, L., Epstein, R.M. Biochemistry (1981) [Pubmed]
  26. Conjugative plasmids and the degradation of arylsulfonates in Comamonas testosteroni. Junker, F., Cook, A.M. Appl. Environ. Microbiol. (1997) [Pubmed]
  27. In vitro genotoxicity of dimethyl terephthalate. Monarca, S., Pool-Zobel, B.L., Rizzi, R., Klein, P., Schmezer, P., Piatti, E., Pasquini, R., De Fusco, R., Biscardi, D. Mutat. Res. (1991) [Pubmed]
  28. Evaluation of endothelial cell integrins after in \ vitro contact with polyethylene terephthalate. Cenni, E., Granchi, D., Verri, E., Remiddi, G., Cavedagna, D., Di Leo, A. Journal of materials science. Materials in medicine. (2001) [Pubmed]
  29. A central role for plasminogen in the inflammatory response to biomaterials. Busuttil, S.J., Ploplis, V.A., Castellino, F.J., Tang, L., Eaton, J.W., Plow, E.F. J. Thromb. Haemost. (2004) [Pubmed]
  30. Astrocyte growth and glial cell line-derived neurotrophic factor secretion in three-dimensional polyethylene terephthalate fibrous matrices. Basu, S., Yang, S.T. Tissue engineering. (2005) [Pubmed]
  31. Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms. Abou-Zeid, D.M., Müller, R.J., Deckwer, W.D. Biomacromolecules (2004) [Pubmed]
  32. Importance of solubility in the sample preparation of poly(ethylene terephthalate) for MALDI TOFMS. Hoteling, A.J., Mourey, T.H., Owens, K.G. Anal. Chem. (2005) [Pubmed]
  33. A smart microfluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads. Malmstadt, N., Yager, P., Hoffman, A.S., Stayton, P.S. Anal. Chem. (2003) [Pubmed]
  34. Transjugular intrahepatic portosystemic shunts formed with polyethylene terephthalate-covered stents: experimental evaluation in pigs. Haskal, Z.J., Brennecke, L.H. Radiology. (1999) [Pubmed]
  35. Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Qiu, Y.L., Sekiguchi, Y., Imachi, H., Kamagata, Y., Tseng, I.C., Cheng, S.S., Ohashi, A., Harada, H. Appl. Environ. Microbiol. (2004) [Pubmed]
  36. Characterisation of the surface Lewis acid-base properties of poly(butylene terephthalate) by inverse gas chromatography. Santos, J.M., Fagelman, K., Guthrie, J.T. Journal of chromatography. A. (2002) [Pubmed]
 
WikiGenes - Universities