Induction of raft-like domains by a myristoylated NAP-22 peptide and its Tyr mutant.
The N-terminally myristoylated, 19-amino acid peptide, corresponding to the amino terminus of the neuronal protein NAP-22 (NAP-22 peptide) is a naturally occurring peptide that had been shown by fluorescence to cause the sequestering of a Bodipy-labeled PtdIns(4,5)P2 in a cholesterol-dependent manner. The present work, using differential scanning calorimetry (DSC), extends the observation that formation of a PtdIns(4,5)P2-rich domain is cholesterol dependent and shows that it also leads to the formation of a cholesterol-depleted domain. The PtdIns(4,5)P2 used in the present work is extracted from natural sources and does not contain any label and has the native acyl chain composition. Peptide-induced formation of a cholesterol-depleted domain is abolished when the sole aromatic amino acid, Tyr11 is replaced with a Leu. Despite this, the modified peptide can still sequester PtdIns(4,5)P2 into domains, probably because of the presence of a cluster of cationic residues in the peptide. Cholesterol and PtdIns(4,5)P2 also modulate the insertion of the peptide into the bilayer as revealed by 1H NOESY MAS/NMR. The intensity of cross peaks between the aromatic protons of the Tyr residue and the protons of the lipid indicate that in the presence of cholesterol there is a change in the nature of the interaction of the peptide with the membrane. These results have important implications for the mechanism by which NAP-22 affects actin reorganization in neurons.[1]References
- Induction of raft-like domains by a myristoylated NAP-22 peptide and its Tyr mutant. Epand, R.F., Sayer, B.G., Epand, R.M. FEBS J. (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg