The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functional interaction between the Drosophila knirps short range transcriptional repressor and RPD3 histone deacetylase.

Knirps and other short range transcriptional repressors play critical roles in patterning the early Drosophila embryo. These repressors are known to bind the C-terminal binding protein corepressor, but their mechanism of action is poorly understood. We purified functional recombinant Knirps protein from transgenic embryos to identify possible cofactors that contribute to the activity of this protein. The protein migrates in a complex of approximately 450 kDa and was found to copurify with the Rpd3 histone deacetylase protein during a double affinity purification procedure. Association of Rpd3 with Knirps was dependent on the presence of the C-terminal binding protein-dependent repression domain of Knirps. Previous studies of an rpd3 mutant had not shown defects in the pattern of expression of even-skipped, a target of the Knirps repressor. However, in embryos doubly heterozygous for knirps and rpd3, a marked increase in the frequency of defects in the Knirps-regulated posterior domain of even-skipped expression was found, indicating that Rpd3 contributes to Knirps repression activity in vivo. This finding implicates deacetylation in the mechanism of short range repression in Drosophila.[1]


WikiGenes - Universities