The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Antimalarials inhibit human erythrocyte membrane acetylcholinesterase.

The current study examined the ability of antimalarials chloroquine (CQ), primaquine (PQ), and quinine ( Q) to inhibit human erythrocyte membrane acetylcholinesterase (AChE) and the mechanisms underlying their inhibitory action. CQ was found to be the most effective inhibitor of the enzyme followed by PQ and Q. The concentrations required to obtain 33% inhibition (IC(33)) for CQ and PQ were 22 and 38 microM, respectively, whereas that for Q was 3.2 mM. The concentrations required to obtain 67% inhibition (IC(67)) were about 9 and 7 times higher for CQ and PQ, whereas that for Q was only about 2.5 times higher. Hill plot analysis revealed that CQ shows de-binding above 40 microM. The two kinetic components of AChE were inhibited by the three antimalarials, and the inhibition was of mixed type. Increasing concentrations of antimalarials caused progressive decrease in the V(max) of both components. IC(33) concentrations resulted in 1.6- to 6-fold increase in K(m) of both the components while IC(67) concentration caused 2.8- to 13-fold increases in K(m) with maximum effect being seen with Q. The K(i) values were lowest for CQ suggesting that it was the most potent inhibitor; these values were 3.3 and 60 times higher for PQ and Q. Antimalarials represent the bifunctional compounds that possess anti-inflammatory properties and also inhibit cholinesterases. The results of our studies suggest that 4-aminoquinoline-based antimalarials like CQ and hydroxychloroquine, which are both potent anti-inflammatory agents and inhibitors of cholinesterases, may have potential use as the most effective neuroprotective agents against amyloid-beta-peptide (Abeta) neurotoxicity in Alzheimer's disease.[1]

References

  1. Antimalarials inhibit human erythrocyte membrane acetylcholinesterase. Katewa, S.D., Katyare, S.S. Drug and chemical toxicology. (2005) [Pubmed]
 
WikiGenes - Universities