The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN134500     (4R)-N'-(7-chloroquinolin-4- yl)-N,N...

Synonyms: CHEBI:48811, AC1L9GXC, BIDD:GT0138, CTK1H1980, 1cet, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of chloroquine

 

Psychiatry related information on chloroquine

 

High impact information on chloroquine

 

Chemical compound and disease context of chloroquine

 

Biological context of chloroquine

 

Anatomical context of chloroquine

  • The movement of LEP100 from endosomes to lysosomes was blocked by chloroquine, causing redistribution to a new steady state in which about 30% of LEP100 molecules were localized in clathrin-coated patches on the cell surface, while intracellular LEP100 occurred in nearby endocytic vesicles [21].
  • Presentation of intact antigen but not of fragmented antigen was totally abrogated by treatment of fibroblasts with chloroquine [22].
  • Here we show that chloroquine (200 microM) also appears to block the storage of newly synthesized ACTH in secretory granules and instead diverts it to the outside of the cell via the constitutive pathway [23].
  • Verapamil reversed chloroquine resistance at the same concentration (1 X 10(-6)M) as that at which it reversed resistance in multidrug-resistant cultured neoplastic cells [24].
  • Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo [25].
 

Associations of chloroquine with other chemical compounds

 

Gene context of chloroquine

  • By transposon-mediated deletion mutagenesis we generated nematode strains with deleted P-glycoprotein genes and found that the pgp-3 deletion mutant, but not the pgp-1 mutant, is sensitive to both colchicine and chloroquine [31].
  • This stimulation was blocked by chloroquine, suggesting that such stimulation resulted from receptor-mediated uptake and lysosomal hydrolysis of the cholesteryl esters in apo E-enriched beta-VLDL [32].
  • Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease [33].
  • However, TLR8 activation by R-848 and TLR2 activation by [S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-R-Cys-S-Ser-Lys4-OH, trihydrochloride)] were not inhibited by chloroquine, whereas TLR9 activation by CpG oligodeoxynucleotides was abolished [34].
  • Environmental antigens (Ag) were used to evaluate IP-10's effect on CD4-dependent, chloroquine-sensitive cytokine synthesis [35].
 

Analytical, diagnostic and therapeutic context of chloroquine

  • We conducted a randomized controlled trial to evaluate the antibody response of freshman veterinary students to intradermal human diploid-cell rabies vaccine administered concurrently with chloroquine, a drug frequently used for chemoprophylaxis against malaria [19].
  • We selected as a control group 11 consecutive patients who had ingested more than 5 g of chloroquine between July 1983 and December 1985 [27].
  • Intermittent intravenous infusion (5 mg of base per kilogram over 4 hours, repeated every 12 hours) also produced wide fluctuations in chloroquine levels, suggesting incomplete distribution from a small central compartment [2].
  • In a retrospective study of 51 cases, we found that ingestion of more than 5 g of chloroquine was an accurate predictor of a fatal outcome, and therefore chose this dose as the criterion for severe chloroquine poisoning [27].
  • Continuous infusion (0.83 mg of base per kilogram per hour for 30 hours) and smaller, more frequent intramuscular or subcutaneous injections of chloroquine (3.5 mg of base per kilogram every 6 hours) produced smoother blood-concentration profiles with lower early peak levels and no adverse cardiovascular or neurologic effects [2].

References

  1. A molecular marker for chloroquine-resistant falciparum malaria. Djimdé, A., Doumbo, O.K., Cortese, J.F., Kayentao, K., Doumbo, S., Diourté, Y., Dicko, A., Su, X.Z., Nomura, T., Fidock, D.A., Wellems, T.E., Plowe, C.V., Coulibaly, D. N. Engl. J. Med. (2001) [Pubmed]
  2. Chloroquine treatment of severe malaria in children. Pharmacokinetics, toxicity, and new dosage recommendations. White, N.J., Miller, K.D., Churchill, F.C., Berry, C., Brown, J., Williams, S.B., Greenwood, B.M. N. Engl. J. Med. (1988) [Pubmed]
  3. Chloroquine in the treatment of porphyria cutanea tarda. Kordac, V., Papezová, R., Semrádová, M. N. Engl. J. Med. (1977) [Pubmed]
  4. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. O'Leary, T.J., Jones, G., Yip, A., Lohnes, D., Cohanim, M., Yendt, E.R. N. Engl. J. Med. (1986) [Pubmed]
  5. The effects of basic substances and acidic ionophores on the digestion of exogenous and endogenous proteins in mouse peritoneal macrophages. Ohkuma, S., Chudzik, J., Poole, B. J. Cell Biol. (1986) [Pubmed]
  6. Characterization of "regulatory" idiotope-specific T cell clones to a monoclonal anti-idiotypic antibody mimicking a tumor-associated antigen (TAA). Saeki, Y., Chen, J.J., Shi, L.F., Raychaudhuri, S., Köhler, H. J. Immunol. (1989) [Pubmed]
  7. Ocular adverse effects associated with systemic medications : recognition and management. Santaella, R.M., Fraunfelder, F.W. Drugs (2007) [Pubmed]
  8. Chloroquine-induced endocytic pathway abnormalities: Cellular model of GM1 ganglioside-induced Abeta fibrillogenesis in Alzheimer's disease. Yuyama, K., Yamamoto, N., Yanagisawa, K. FEBS Lett. (2006) [Pubmed]
  9. Transient global amnesia following ingestion of chloroquine. Cras, P., Martin, J.J. J. Neurol. Neurosurg. Psychiatr. (1990) [Pubmed]
  10. P. falciparum CG2, linked to chloroquine resistance, does not resemble Na+/H+ exchangers. Wellems, T.E., Wootton, J.C., Fujioka, H., Su, X., Cooper, R., Baruch, D., Fidock, D.A. Cell (1998) [Pubmed]
  11. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Su, X., Kirkman, L.A., Fujioka, H., Wellems, T.E. Cell (1997) [Pubmed]
  12. Treatment of sideroblastic anemia with chloroquine. Drénou, B., Guyader, D., Turlin, B., Fauchet, R. N. Engl. J. Med. (1995) [Pubmed]
  13. Effectiveness and tolerance of long-term malaria prophylaxis with mefloquine. Need for a better dosing regimen. Lobel, H.O., Bernard, K.W., Williams, S.L., Hightower, A.W., Patchen, L.C., Campbell, C.C. JAMA (1991) [Pubmed]
  14. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. Lund, J., Sato, A., Akira, S., Medzhitov, R., Iwasaki, A. J. Exp. Med. (2003) [Pubmed]
  15. Remissions of mammary adenocarcinoma in hypothyroid mice given 5-fluorouracil and chloroquine phosphate. Shoemaker, J.P., Dagher, R.K. J. Natl. Cancer Inst. (1979) [Pubmed]
  16. Systematic review of amodiaquine treatment in uncomplicated malaria. Olliaro, P., Nevill, C., LeBras, J., Ringwald, P., Mussano, P., Garner, P., Brasseur, P. Lancet (1996) [Pubmed]
  17. Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Foote, S.J., Thompson, J.K., Cowman, A.F., Kemp, D.J. Cell (1989) [Pubmed]
  18. Primary amines inhibit recycling of alpha 2M receptors in fibroblasts. Van Leuven, F., Cassiman, J.J., Van Den Berghe, H. Cell (1980) [Pubmed]
  19. Antibody response to preexposure human diploid-cell rabies vaccine given concurrently with chloroquine. Pappaioanou, M., Fishbein, D.B., Dreesen, D.W., Schwartz, I.K., Campbell, G.H., Sumner, J.W., Patchen, L.C., Brown, W.J. N. Engl. J. Med. (1986) [Pubmed]
  20. Analysis of the effect of amines on inhibition of receptor-mediated and fluid-phase pinocytosis in rabbit alveolar macrophages. Kaplan, J., Keogh, E.A. Cell (1981) [Pubmed]
  21. Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis. Lippincott-Schwartz, J., Fambrough, D.M. Cell (1987) [Pubmed]
  22. A role of Ia-associated invariant chains in antigen processing and presentation. Stockinger, B., Pessara, U., Lin, R.H., Habicht, J., Grez, M., Koch, N. Cell (1989) [Pubmed]
  23. Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. Moore, H.P., Gumbiner, B., Kelly, R.B. Nature (1983) [Pubmed]
  24. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Martin, S.K., Oduola, A.M., Milhous, W.K. Science (1987) [Pubmed]
  25. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. Accapezzato, D., Visco, V., Francavilla, V., Molette, C., Donato, T., Paroli, M., Mondelli, M.U., Doria, M., Torrisi, M.R., Barnaba, V. J. Exp. Med. (2005) [Pubmed]
  26. Intravenous quinidine for the treatment of severe falciparum malaria. Clinical and pharmacokinetic studies. Phillips, R.E., Warrell, D.A., White, N.J., Looareesuwan, S., Karbwang, J. N. Engl. J. Med. (1985) [Pubmed]
  27. Treatment of severe chloroquine poisoning. Riou, B., Barriot, P., Rimailho, A., Baud, F.J. N. Engl. J. Med. (1988) [Pubmed]
  28. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Slater, A.F., Cerami, A. Nature (1992) [Pubmed]
  29. Treatment of chloroquine-resistant malaria during pregnancy. Main, E.K., Main, D.M., Krogstad, D.J. JAMA (1983) [Pubmed]
  30. Therapy and prophylaxis of malaria. Trenholme, G.H., Carson, P.E. JAMA (1978) [Pubmed]
  31. A P-glycoprotein protects Caenorhabditis elegans against natural toxins. Broeks, A., Janssen, H.W., Calafat, J., Plasterk, R.H. EMBO J. (1995) [Pubmed]
  32. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Kowal, R.C., Herz, J., Goldstein, J.L., Esser, V., Brown, M.S. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  33. Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease. Pearce, D.A., Carr, C.J., Das, B., Sherman, F. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  34. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Lee, J., Chuang, T.H., Redecke, V., She, L., Pitha, P.M., Carson, D.A., Raz, E., Cottam, H.B. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  35. Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFN-gamma over IL-4 responses. Gangur, V., Simons, F.E., Hayglass, K.T. FASEB J. (1998) [Pubmed]
 
WikiGenes - Universities