The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Peptide fragment studies on the folding elements of dihydrofolate reductase from Escherichia coli.

One of the necessary conditions for a protein to be foldable is the presence of a complete set of "folding elements" (FEs) that are short, contiguous peptide segments distributed over an amino acid sequence. The FE-assembly model of protein folding has been proposed, in which the FEs play a role in guiding structure formation through FE-FE interactions early in folding. However, two major issues remain to be clarified regarding the roles of the FEs in determining protein foldability. Are the FEs AFUs that can form nativelike structures in isolation? Is the presence of only the FEs without mutual connections a sufficient condition for a protein to be foldable? Here, we address these questions using peptide fragments corresponding to the FEs of DHFR from Escherichia coli. We show by CD measurement that the FE peptides are unfolded under the native conditions, and some of them have the propensities toward non-native helices. MD simulations also show the non-native helical propensities of the peptides, and the helix contents estimated from the simulations are well correlated with those estimated from the CD in TFE. Thus, the FEs of DHFR are not AFUs, suggesting the importance of the FEs in nonlocal interactions. We also show that equimolar mixtures of the FE peptides do not induce any structural formation. Therefore, mutual connections between the FEs, which should strengthen the nonlocal FE-FE interactions, are also one of the necessary conditions for a protein to be foldable.[1]

References

 
WikiGenes - Universities