The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Protein Folding

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Protein Folding

 

Psychiatry related information on Protein Folding

  • These data suggest that doxycycline and protein folding agents may hold promise as therapeutic agents for familial CJD H187R and other familial disorders that share similar pathogenic mechanisms [6].
 

High impact information on Protein Folding

  • There are several families of chaperones; those most involved in protein folding are the 40-kDa heat shock protein (HSP40; DnaJ), 60-kDa heat shock protein (HSP60; GroEL), and 70-kDa heat shock protein (HSP70; DnaK) families [7].
  • The flavoenzyme Ero1p produces disulfide bonds for oxidative protein folding in the endoplasmic reticulum [8].
  • The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring [9].
  • The presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding [10].
  • A role for DnaK, the major E. coli Hsp70, in chaperoning de novo protein folding has remained elusive [11].
 

Chemical compound and disease context of Protein Folding

 

Biological context of Protein Folding

 

Anatomical context of Protein Folding

 

Associations of Protein Folding with chemical compounds

  • On the basis of this important finding, it was suggested that disulphide isomerase accelerates protein folding, not by 'reshuffling' incorrect disulphide bonds, but in the same way as prolyl isomerase by catalysing proline isomerization which is known to be important for the folding of collagen and other proteins [27].
  • Slow protein-folding reactions are accelerated by a prolyl cis/trans isomerase isolated from porcine kidney which is identical to cyclophilin, a protein that is probably the cellular receptor for the immunosuppressant cyclosporin A [28].
  • Here we report a hybrid hydrogel system assembled from water-soluble synthetic polymers and a well-defined protein-folding motif, the coiled coil [29].
  • A predictive rule for protein folding is presented that involves two recurrent glycine-based motifs that cap the carboxyl termini of alpha helices [30].
  • Castanospermine, an inhibitor of ER glucosidases, blocked the binding of proteins to calnexin and inhibited G protein folding [31].
 

Gene context of Protein Folding

  • Together, these proteins make up the inactive GR, thus biochemically linking two families of proteins proposed to be involved in protein folding and assembly as well as two potent immunosuppressive modalities [32].
  • We describe a conserved yeast gene, ERO1, that is induced by the unfolded protein response and encodes a novel glycoprotein required for oxidative protein folding in the ER [33].
  • PS1 mutations also lead to decreased expression of GRP78/Bip, a molecular chaperone, present in the ER, that can enable protein folding [34].
  • Manipulation of oxidative protein folding and PDI redox state in mammalian cells [35].
  • Our results identify Hsp10 as an essential component of the mitochondrial protein folding apparatus, participating in various aspects of Hsp60 function [23].
 

Analytical, diagnostic and therapeutic context of Protein Folding

References

  1. In vivo observation of polypeptide flux through the bacterial chaperonin system. Ewalt, K.L., Hendrick, J.P., Houry, W.A., Hartl, F.U. Cell (1997) [Pubmed]
  2. Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage. Hunt, J.F., van der Vies, S.M., Henry, L., Deisenhofer, J. Cell (1997) [Pubmed]
  3. A foldable CFTR{Delta}F508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. Younger, J.M., Ren, H.Y., Chen, L., Fan, C.Y., Fields, A., Patterson, C., Cyr, D.M. J. Cell Biol. (2004) [Pubmed]
  4. Structure of human lactoferrin at 3.2-A resolution. Anderson, B.F., Baker, H.M., Dodson, E.J., Norris, G.E., Rumball, S.V., Waters, J.M., Baker, E.N. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  5. Carnitine palmitoyltransferase in cardiac ischemia. A potential site for altered fatty acid metabolism. Pauly, D.F., Kirk, K.A., McMillin, J.B. Circ. Res. (1991) [Pubmed]
  6. Doxycycline and protein folding agents rescue the abnormal phenotype of familial CJD H187R in a cell model. Gu, Y., Singh, N. Brain Res. Mol. Brain Res. (2004) [Pubmed]
  7. Chaperone-mediated protein folding. Fink, A.L. Physiol. Rev. (1999) [Pubmed]
  8. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Gross, E., Kastner, D.B., Kaiser, C.A., Fass, D. Cell (2004) [Pubmed]
  9. ATP-bound states of GroEL captured by cryo-electron microscopy. Ranson, N.A., Farr, G.W., Roseman, A.M., Gowen, B., Fenton, W.A., Horwich, A.L., Saibil, H.R. Cell (2001) [Pubmed]
  10. ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Engert, J.C., Bérubé, P., Mercier, J., Doré, C., Lepage, P., Ge, B., Bouchard, J.P., Mathieu, J., Melançon, S.B., Schalling, M., Lander, E.S., Morgan, K., Hudson, T.J., Richter, A. Nat. Genet. (2000) [Pubmed]
  11. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Teter, S.A., Houry, W.A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G., Blum, P., Georgopoulos, C., Hartl, F.U. Cell (1999) [Pubmed]
  12. Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding. Scholz, C., Stoller, G., Zarnt, T., Fischer, G., Schmid, F.X. EMBO J. (1997) [Pubmed]
  13. A Bethlem myopathy Gly to Glu mutation in the von Willebrand factor A domain N2 of the collagen alpha3(VI) chain interferes with protein folding. Sasaki, T., Hohenester, E., Zhang, R.Z., Gotta, S., Speer, M.C., Tandan, R., Timpl, R., Chu, M.L. FASEB J. (2000) [Pubmed]
  14. Homogeneous Escherichia coli chaperonin 60 induces IL-1 beta and IL-6 gene expression in human monocytes by a mechanism independent of protein conformation. Tabona, P., Reddi, K., Khan, S., Nair, S.P., Crean, S.J., Meghji, S., Wilson, M., Preuss, M., Miller, A.D., Poole, S., Carne, S., Henderson, B. J. Immunol. (1998) [Pubmed]
  15. Oligomycin sensitivity-conferring protein (OSCP) of mitochondrial ATP synthase. The carboxyl-terminal region of OSCP is essential for the reconstitution of oligomycin-sensitive H(+)-ATPase. Joshi, S., Javed, A.A., Gibbs, L.C. J. Biol. Chem. (1992) [Pubmed]
  16. High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin. Kusmierczyk, A.R., Martin, J. J. Biol. Chem. (2000) [Pubmed]
  17. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A., Bukau, B. Nature (1999) [Pubmed]
  18. Mutants of bovine pancreatic trypsin inhibitor lacking cysteines 14 and 38 can fold properly. Marks, C.B., Naderi, H., Kosen, P.A., Kuntz, I.D., Anderson, S. Science (1987) [Pubmed]
  19. Structure and function of DNA methyltransferases. Cheng, X. Annual review of biophysics and biomolecular structure. (1995) [Pubmed]
  20. Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. van den Berg, B., Wain, R., Dobson, C.M., Ellis, R.J. EMBO J. (2000) [Pubmed]
  21. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. Holst, B., Tachibana, C., Winther, J.R. J. Cell Biol. (1997) [Pubmed]
  22. A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast. Blumberg, H., Silver, P.A. Nature (1991) [Pubmed]
  23. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. Höhfeld, J., Hartl, F.U. J. Cell Biol. (1994) [Pubmed]
  24. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. Jonda, S., Huber-Wunderlich, M., Glockshuber, R., Mössner, E. EMBO J. (1999) [Pubmed]
  25. The cyclosporin A-binding immunophilin CyP-40 and the FK506-binding immunophilin hsp56 bind to a common site on hsp90 and exist in independent cytosolic heterocomplexes with the untransformed glucocorticoid receptor. Owens-Grillo, J.K., Hoffmann, K., Hutchison, K.A., Yem, A.W., Deibel, M.R., Handschumacher, R.E., Pratt, W.B. J. Biol. Chem. (1995) [Pubmed]
  26. Conformational dynamics underlie the activity of the auxin-binding protein, Nt-abp1. David, K., Carnero-Diaz, E., Leblanc, N., Monestiez, M., Grosclaude, J., Perrot-Rechenmann, C. J. Biol. Chem. (2001) [Pubmed]
  27. Protein-disulphide isomerase and prolyl isomerase act differently and independently as catalysts of protein folding. Lang, K., Schmid, F.X. Nature (1988) [Pubmed]
  28. Isolation and sequence of an FK506-binding protein from N. crassa which catalyses protein folding. Tropschug, M., Wachter, E., Mayer, S., Schönbrunner, E.R., Schmid, F.X. Nature (1990) [Pubmed]
  29. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Wang, C., Stewart, R.J., Kopecek, J. Nature (1999) [Pubmed]
  30. Rules for alpha-helix termination by glycine. Aurora, R., Srinivasan, R., Rose, G.D. Science (1994) [Pubmed]
  31. Folding of VSV G protein: sequential interaction with BiP and calnexin. Hammond, C., Helenius, A. Science (1994) [Pubmed]
  32. Association of a 59-kilodalton immunophilin with the glucocorticoid receptor complex. Tai, P.K., Albers, M.W., Chang, H., Faber, L.E., Schreiber, S.L. Science (1992) [Pubmed]
  33. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Frand, A.R., Kaiser, C.A. Mol. Cell (1998) [Pubmed]
  34. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., Morihara, T., Yoneda, T., Gomi, F., Mori, Y., Nakano, Y., Takeda, J., Tsuda, T., Itoyama, Y., Murayama, O., Takashima, A., St George-Hyslop, P., Takeda, M., Tohyama, M. Nat. Cell Biol. (1999) [Pubmed]
  35. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. Mezghrani, A., Fassio, A., Benham, A., Simmen, T., Braakman, I., Sitia, R. EMBO J. (2001) [Pubmed]
  36. The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Azem, A., Diamant, S., Kessel, M., Weiss, C., Goloubinoff, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  37. Structural and functional characterization of the CD2 immunoadhesion domain. Evidence for inclusion of CD2 in an alpha-beta protein folding class. Recny, M.A., Neidhardt, E.A., Sayre, P.H., Ciardelli, T.L., Reinherz, E.L. J. Biol. Chem. (1990) [Pubmed]
  38. Prion glycoprotein: structure, dynamics, and roles for the sugars. Rudd, P.M., Wormald, M.R., Wing, D.R., Prusiner, S.B., Dwek, R.A. Biochemistry (2001) [Pubmed]
  39. The molecular basis of cooperativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase. Freire, E., Murphy, K.P., Sanchez-Ruiz, J.M., Galisteo, M.L., Privalov, P.L. Biochemistry (1992) [Pubmed]
  40. Alcohol-induced protein folding transitions in platelet factor 4: the O-state. Yang, Y., Mayo, K.H. Biochemistry (1993) [Pubmed]
 
WikiGenes - Universities