The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Interaction of protein synthesis initiation factors with the mRNA cap structure.

The mechanism of mRNA recognition by proteins interacting with the mRNA cap structure was investigated by photochemical cross-linking of proteins with 32P-labelled reoviral RNAs. Using ribosomal washes as a source of eukaryotic protein synthesis initiation factors, we identified the well-known cap binding proteins eIF-4B and -4E, but eIF-2 and eIF-3 as well. The interplay of purified eIF-4A, -4B, and -4F was studied in relation to ATP dependence and cap analogue sensitivity of cap binding. Next to their well-known roles in the initiation process, eIF-2 and eIF-3 also cross- linked to the 5' cap. eIF-2 stimulated eIF-4B and -4E cross-linking, an observation that has been previously described more extensively. The interaction of eIF-2 with the 5' end of mRNA was extremely sensitive to K(+)-ions and was resistant to a high concentration of Mg(2+)-ions; this influence of mono- and divalent ions was in contrast with the cross-linking of eIF-4B and -4E. Optimal interaction of these factors was obtained at moderate K+ concentration and low Mg(2+)-ion concentrations. eIF-2 cross-linking was sensitive to high protein to mRNA ratios indicating a weak affinity as compared to eIF-4E and -4B. The interaction of eIF-3 with the cap of mRNA is also weak as it was counteracted by all other cap binding proteins, leading to an inability to detect the cross-linking of this protein in crude eIF preparations. Time kinetics of formation of complexes suggested eIF-2 to be one of the first factors to interact with mRNA. Preformed RNA-protein complexes were dissociated after cap analogue addition, suggesting reversible interactions between RNA and proteins.[1]

References

  1. Interaction of protein synthesis initiation factors with the mRNA cap structure. van Heugten, H.A., Thomas, A.A., Voorma, H.O. Biochimie (1992) [Pubmed]
 
WikiGenes - Universities