The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Spin-unrestricted linear-scaling electronic structure theory and its application to magnetic carbon-doped boron nitride nanotubes.

We present an extension of the density-matrix-based linear-scaling electronic structure theory to incorporate spin degrees of freedom. When the spin multiplicity of the system can be predetermined, the generalization of the existing linear-scaling methods to spin-unrestricted cases is straightforward. However, without calculations it is hard to determine the spin multiplicity of some complex systems, such as many magnetic nanostuctures and some inorganic or bioinorganic molecules. Here we give a general prescription to obtain the spin-unrestricted ground state of open-shell systems. Our methods are implemented into the linear-scaling trace-correcting density-matrix purification algorithm. The numerical atomic-orbital basis, rather than the commonly adopted Gaussian basis functions, is used. The test systems include O2 molecule and magnetic carbon-doped boron nitride (BN)(5,5) and BN(7,6) nanotubes. Using the newly developed method, we find that the magnetic moments in carbon-doped BN nanotubes couple antiferromagnetically with each other. Our results suggest that the linear-scaling spin-unrestricted trace-correcting purification method is very powerful to treat large magnetic systems.[1]

References

  1. Spin-unrestricted linear-scaling electronic structure theory and its application to magnetic carbon-doped boron nitride nanotubes. Xiang, H.J., Liang, W.Z., Yang, J., Hou, J.G., Zhu, Q. The Journal of chemical physics. (2005) [Pubmed]
 
WikiGenes - Universities