The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Nanotubes

  • The bioavailability of zidovudine nanospheres at 50 mg/kg of body weight was 76%, and this dose achieved prolonged exposure to zidovudine compared to standard formulations without an increase in the drug's peak concentration [1].
  • We have studied the cytotoxicity and accumulation of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres in a model of doxorubicin-resistant rat glioblastoma variants differing by their degree of resistance to this drug [2].
  • In this study, we use His-tagged perfringolysin O (PFO), a soluble toxin secreted by the bacterial pathogen Clostridium perfringens, as a model protein to test the utility of nickel-lipid nanotubes as a tool for structural studies of His-tagged proteins [3].
  • We have previously reported that concanavalin A-immobilized polystyrene nanospheres (Con A-NS) could efficiently capture HIV-1 particles and gp120 antigens on their surface and that intravaginal immunization with inactivated HIV-1-capturing nanospheres (HIV-NS) induced vaginal anti-HIV-1 IgA antibody in mice [4].
  • After the administration of 3.9 I.U./kg insulin with the PLGA nanospheres, the blood glucose level was reduced significantly and the hypoglycemia was prolonged over 48 h, compared to the nebulized aqueous solution of insulin as a reference (6 h) [5].

Psychiatry related information on Nanotubes


High impact information on Nanotubes

  • There are reports of nanotubes made from silica, alumina, silicon and metals that do not have a layered crystal structure; they are synthesized by using carbon nanotubes and porous membranes as templates, or by thin-film rolling [7].
  • Single-crystal gallium nitride nanotubes [7].
  • When these peptide nanopatterned holographic structures are exposed to a silicic acid, an ordered array of silica nanospheres is deposited onto the clear polymer substrate [8].
  • Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes [9].
  • The bundles, which contain interstitial iodine, can be readily disassembled into individual molybdenum disulfide nanotubes [9].

Chemical compound and disease context of Nanotubes


Biological context of Nanotubes


Anatomical context of Nanotubes

  • We investigated the antitumor activity of Adriamycin on a monocytic-like cancer cell line U-937 after its binding on polymethacrylate nanospheres (diameter, 270-350 nm) [19].
  • Besides the effects on membrane phase properties, H2O2 promoted actin polymerization, induced the formation of cell-to-cell tunneling nanotube (TNT)-like connections among astrocytes and increased the colocalization of myosin Va with F-actin [20].
  • When directly mixed with CF sputum, recombinant human deoxyribonuclease I moderately facilitated the transport of nanospheres through CF sputum [16].
  • To date, the in vivo efficacy of these chitosan-based colloidal carriers has been reported for two different applications: while DNA-chitosan hybrid nanospheres were found to be acceptable transfection carriers, ionically crosslinked chitosan nanoparticles appeared to be efficient vehicles for the transport of peptides across the nasal mucosa [21].
  • At the nanoscale level, the forming matrix adjacent to the secretory face of the ameloblast shows alteration in the size of the amelogenin nanospheres for either transgenic animal line [22].

Associations of Nanotubes with chemical compounds

  • A chemical map for gadolinium (Gd) clearly reveals the distribution of Gd atoms inside a single chain of metallofullerene molecules (Gd@C82) generated within a single-wall carbon nanotube [23].
  • The results obtained prove that the addition of fluorine drastically enhances the reactivity of the nanotube side walls [24].
  • By pyrolysis of organometallics in the presence of thiophene, Y-junction nanotubes are obtained in large quantities [25].
  • The removal of CD from the nanotube with poly(propylene glycol) reversibly generates vesicles [26].
  • The in situ inclusion of the focal pyrene units into the cavity of beta- or gamma-cyclodextrin (CD) induces self-assembled organic nanotubes with an average outer diameter of approximately 45 nm and inner diameter of 22 nm [26].

Gene context of Nanotubes


Analytical, diagnostic and therapeutic context of Nanotubes


  1. Pharmacokinetics of oral zidovudine entrapped in biodegradable nanospheres in rabbits. Callender, D.P., Jayaprakash, N., Bell, A., Petraitis, V., Petraitiene, R., Candelario, M., Schaufele, R., Dunn, J.M., Sei, S., Walsh, T.J., Balis, F.M., Petratienes, R. Antimicrob. Agents Chemother. (1999) [Pubmed]
  2. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Bennis, S., Chapey, C., Couvreur, P., Robert, J. Eur. J. Cancer (1994) [Pubmed]
  3. Helical crystallization on nickel-lipid nanotubes: perfringolysin O as a model protein. Dang, T.X., Milligan, R.A., Tweten, R.K., Wilson-Kubalek, E.M. J. Struct. Biol. (2005) [Pubmed]
  4. Mucosal immunization with inactivated HIV-1-capturing nanospheres induces a significant HIV-1-specific vaginal antibody response in mice. Akagi, T., Kawamura, M., Ueno, M., Hiraishi, K., Adachi, M., Serizawa, T., Akashi, M., Baba, M. J. Med. Virol. (2003) [Pubmed]
  5. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. Kawashima, Y., Yamamoto, H., Takeuchi, H., Fujioka, S., Hino, T. Journal of controlled release : official journal of the Controlled Release Society. (1999) [Pubmed]
  6. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep. Quattrochi, J., Datta, S., Hobson, J.A. Neuroscience (1998) [Pubmed]
  7. Single-crystal gallium nitride nanotubes. Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H.J., Yang, P. Nature (2003) [Pubmed]
  8. Ultrafast holographic nanopatterning of biocatalytically formed silica. Brott, L.L., Naik, R.R., Pikas, D.J., Kirkpatrick, S.M., Tomlin, D.W., Whitlock, P.W., Clarson, S.J., Stone, M.O. Nature (2001) [Pubmed]
  9. Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demsar, J., Stadelmann, P., Levy, F., Mihailovic, D. Science (2001) [Pubmed]
  10. On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance. Hu, Y.P., Jarillon, S., Dubernet, C., Couvreur, P., Robert, J. Cancer Chemother. Pharmacol. (1996) [Pubmed]
  11. Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases. II: Tissue distribution and pharmacodynamics. Lu, B., Xiong, S.B., Yang, H., Yin, X.D., Zhao, R.B. International journal of pharmaceutics. (2006) [Pubmed]
  12. Pure antiestrogen RU 58668-loaded nanospheres: morphology, cell activity and toxicity studies. Ameller, T., Marsaud, V., Legrand, P., Gref, R., Renoir, J.M. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. (2004) [Pubmed]
  13. Indomethacin-loaded methoxy poly(ethylene glycol)/poly(D,L-lactide) amphiphilic diblock copolymeric nanospheres: pharmacokinetic and toxicity studies in rodents. Kim, S.Y., Lee, Y.M., Kang, J.S. Journal of biomedical materials research. Part A. (2005) [Pubmed]
  14. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Veerareddy, P.R., Vobalaboina, V., Nahid, A. Die Pharmazie. (2004) [Pubmed]
  15. Structure analyses of dodecylated single-walled carbon nanotubes. Liang, F., Alemany, L.B., Beach, J.M., Billups, W.E. J. Am. Chem. Soc. (2005) [Pubmed]
  16. Cystic fibrosis sputum: a barrier to the transport of nanospheres. Sanders, N.N., De Smedt, S.C., Van Rompaey, E., Simoens, P., De Baets, F., Demeester, J. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  17. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Li, X.L., Ge, J.P., Li, Y.D. Chemistry (Weinheim an der Bergstrasse, Germany) (2004) [Pubmed]
  18. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Tagmatarchis, N., Georgakilas, V., Prato, M., Shinohara, H. Chem. Commun. (Camb.) (2002) [Pubmed]
  19. Enhancement of adriamycin antitumor activity by its binding with an intracellular sustained-release form, polymethacrylate nanospheres, in U-937 cells. Astier, A., Doat, B., Ferrer, M.J., Benoit, G., Fleury, J., Rolland, A., Leverge, R. Cancer Res. (1988) [Pubmed]
  20. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. Zhu, D., Tan, K.S., Zhang, X., Sun, A.Y., Sun, G.Y., Lee, J.C. J. Cell. Sci. (2005) [Pubmed]
  21. Polysaccharide colloidal particles as delivery systems for macromolecules. Janes, K.A., Calvo, P., Alonso, M.J. Adv. Drug Deliv. Rev. (2001) [Pubmed]
  22. Enamel biomineralization defects result from alterations to amelogenin self-assembly. Paine, M.L., Zhu, D.H., Luo, W., Bringas, P., Goldberg, M., White, S.N., Lei, Y.P., Sarikaya, M., Fong, H.K., Snead, M.L. J. Struct. Biol. (2000) [Pubmed]
  23. Element-selective single atom imaging. Suenaga, K., Tence, M., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hirahara, K., Bandow, S., Iijima, S. Science (2000) [Pubmed]
  24. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Khabashesku, V.N., Billups, W.E., Margrave, J.L. Acc. Chem. Res. (2002) [Pubmed]
  25. Carbon nanotubes from organometallic precursors. Rao, C.N., Govindaraj, A. Acc. Chem. Res. (2002) [Pubmed]
  26. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Park, C., Lee, I.H., Lee, S., Song, Y., Rhue, M., Kim, C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  27. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Elam, J.S., Taylor, A.B., Strange, R., Antonyuk, S., Doucette, P.A., Rodriguez, J.A., Hasnain, S.S., Hayward, L.J., Valentine, J.S., Yeates, T.O., Hart, P.J. Nat. Struct. Biol. (2003) [Pubmed]
  28. Green- and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry. Bhalgat, M.K., Haugland, R.P., Pollack, J.S., Swan, S., Haugland, R.P. J. Immunol. Methods (1998) [Pubmed]
  29. Quantification of the expression of multidrug resistance-related genes in human tumour cell lines grown with free doxorubicin or doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres. Laurand, A., Laroche-Clary, A., Larrue, A., Huet, S., Soma, E., Bonnet, J., Robert, J. Anticancer Res. (2004) [Pubmed]
  30. Vascular endothelial growth factor gene delivery by magnetic DNA nanospheres ameliorates limb ischemia in rabbits. Jiang, H., Zhang, T., Sun, X. J. Surg. Res. (2005) [Pubmed]
  31. Altered amelogenin self-assembly based on mutations observed in human X-linked amelogenesis imperfecta (AIH1). Paine, M.L., Lei, Y.P., Dickerson, K., Snead, M.L. J. Biol. Chem. (2002) [Pubmed]
  32. Application of host-guest chemistry in nanotube-based device fabrication: photochemically controlled immobilization of azobenzene nanotubes on patterned alpha-CD monolayer/Au substrates via molecular recognition. Banerjee, I.A., Yu, L., Matsui, H. J. Am. Chem. Soc. (2003) [Pubmed]
  33. Transmission electron microscopy imaging of individual functional groups of fullerene derivatives. Liu, Z., Koshino, M., Suenaga, K., Mrzel, A., Kataura, H., Iijima, S. Phys. Rev. Lett. (2006) [Pubmed]
  34. Polymerization from the surface of single-walled carbon nanotubes - preparation and characterization of nanocomposites. Yao, Z., Braidy, N., Botton, G.A., Adronov, A. J. Am. Chem. Soc. (2003) [Pubmed]
  35. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Arenal, R., Stéphan, O., Kociak, M., Taverna, D., Loiseau, A., Colliex, C. Phys. Rev. Lett. (2005) [Pubmed]
  36. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Fenoglio, I., Tomatis, M., Lison, D., Muller, J., Fonseca, A., Nagy, J.B., Fubini, B. Free Radic. Biol. Med. (2006) [Pubmed]
WikiGenes - Universities