The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha.

Hypoxia-inducible factor 1 (HIF-1) is controlled through stability regulation of its alpha subunit, which is expressed under hypoxia but degraded under normoxia. Degradation of HIF-1alpha requires association of the von Hippel Lindau protein (pVHL) to provoke ubiquitination followed by proteasomal digestion. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha under normoxia but destabilizes the protein under hypoxia. To understand the role of NO under hypoxia we made use of pVHL-deficient renal carcinoma cells (RCC4) that show a high steady state HIF-1alpha expression under normoxia. Exposing RCC4 cells to hypoxia in combination with the NO donor DETA-NO (2,2'-(hydroxynitrosohydrazono) bis-ethanimine), but not hypoxia or DETA-NO alone, decreased HIF-1alpha protein and attenuated HIF-1 transactivation. Mechanistically, we noticed a role of calpain because calpain inhibitors reversed HIF-1alpha degradation. Furthermore, chelating intracellular calcium attenuated HIF-1alpha destruction by hypoxia/DETA-NO, whereas a calcium increase was sufficient to lower the amount of HIF-1alpha even under normoxia. An active role of calpain in lowering HIF-1alpha amount was also evident in pVHL-containing human embryonic kidney cells when the calcium pump inhibitor thapsigargin reduced HIF-1alpha that was stabilized by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We conclude that calcium contributes to HIF-1alpha destruction involving the calpain system.[1]


  1. Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Zhou, J., Köhl, R., Herr, B., Frank, R., Brüne, B. Mol. Biol. Cell (2006) [Pubmed]
WikiGenes - Universities