The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Anoxia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Anoxia

 

Psychiatry related information on Anoxia

 

High impact information on Anoxia

  • Tissue damage-associated deep hypoxia, hypoxia-inducible factors, and hypoxia-induced accumulation of adenosine may represent one of the most fundamental and immediate tissue-protecting mechanisms, with adenosine A2A receptors triggering "OFF" signals in activated immune cells [11].
  • In yeast and bacteria, regulatory operons coordinate expression of genes responsible for adaptive responses to hypoxia and hyperoxia [12].
  • HCP 1 mRNA was highly expressed in duodenum and regulated by hypoxia [13].
  • Microarray analysis revealed that Sre1 activates sterol biosynthetic enzymes as in mammals, and, surprisingly, Sre1 also stimulates transcription of genes required for adaptation to hypoxia [14].
  • Siah2 null mice subjected to hypoxia displayed an impaired hyperpneic respiratory response and reduced levels of hemoglobin [15].
 

Chemical compound and disease context of Anoxia

 

Biological context of Anoxia

 

Anatomical context of Anoxia

 

Gene context of Anoxia

  • Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator of vascular endothelial growth factor (VEGF) and is critical for initiating early cellular responses to hypoxia [36].
  • Thus, the control of PHD1/3 by Siah1a/2 constitutes another level of complexity in the regulation of HIF1alpha during hypoxia [15].
  • VEGF induction by hypoxia in c-src(-) cells is impaired, although there is a compensatory activation of Fyn [19].
  • During terminal branching, FGF expression is regulated by hypoxia, ensuring that tracheal structure matches cellular oxygen need [37].
  • These results indicate that amplification of normal HIF-1-dependent responses to hypoxia via loss of p53 function contributes to the angiogenic switch during tumorigenesis [38].
  • This conclusion is supported by the finding that HIF-1alpha down-regulation by Cre-mediated excision drastically decreased RAGE induction by hypoxia or desferrioxamine [39].
  • Treatment of tumour cells with the MEK1/2 inhibitors PD98059 or U0216, or expression of a dominant-negative form of ERK1 blocked HIF-1 activation in hypoxia without affecting HIF-1alpha induction, localization or binding of HIF-1beta [40].
  • We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression [41].
  • Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia [42].
 

Analytical, diagnostic and therapeutic context of Anoxia

References

  1. Long-term therapy of myoclonus and other neurologic disorders with L-5-hydroxytryptophan and carbidopa. Van Woert, M.H., Rosenbaum, D., Howieson, J., Bowers, M.B. N. Engl. J. Med. (1977) [Pubmed]
  2. Maternal ethanol exposure induces transient impairment of umbilical circulation and fetal hypoxia in monkeys. Mukherjee, A.B., Hodgen, G.D. Science (1982) [Pubmed]
  3. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Mecham, R.P., Whitehouse, L.A., Wrenn, D.S., Parks, W.C., Griffin, G.L., Senior, R.M., Crouch, E.C., Stenmark, K.R., Voelkel, N.F. Science (1987) [Pubmed]
  4. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Copani, A., Uberti, D., Sortino, M.A., Bruno, V., Nicoletti, F., Memo, M. Trends Neurosci. (2001) [Pubmed]
  5. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. Tenan, M., Fulci, G., Albertoni, M., Diserens, A.C., Hamou, M.F., El Atifi-Borel, M., Feige, J.J., Pepper, M.S., Van Meir, E.G. J. Exp. Med. (2000) [Pubmed]
  6. Piracetam and other structurally related nootropics. Gouliaev, A.H., Senning, A. Brain Res. Brain Res. Rev. (1994) [Pubmed]
  7. NADPH oxidase mediates hypersomnolence and brain oxidative injury in a murine model of sleep apnea. Zhan, G., Serrano, F., Fenik, P., Hsu, R., Kong, L., Pratico, D., Klann, E., Veasey, S.C. Am. J. Respir. Crit. Care Med. (2005) [Pubmed]
  8. Delayed posthypoxic demyelination. Association with arylsulfatase A deficiency and lactic acidosis on proton MR spectroscopy. Gottfried, J.A., Mayer, S.A., Shungu, D.C., Chang, Y., Duyn, J.H. Neurology (1997) [Pubmed]
  9. Effect of hypoxia on ventilatory and arousal responses to CO2 during NREM sleep with and without flurazepam in young adults. Gothe, B., Cherniack, N.S., Williams, L. Sleep. (1986) [Pubmed]
  10. Ontogeny of the stress response in the rat: role of the pituitary and the hypothalamus. Walker, C.D., Perrin, M., Vale, W., Rivier, C. Endocrinology (1986) [Pubmed]
  11. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Sitkovsky, M.V., Lukashev, D., Apasov, S., Kojima, H., Koshiba, M., Caldwell, C., Ohta, A., Thiel, M. Annu. Rev. Immunol. (2004) [Pubmed]
  12. Oxygen sensing and molecular adaptation to hypoxia. Bunn, H.F., Poyton, R.O. Physiol. Rev. (1996) [Pubmed]
  13. Identification of an intestinal heme transporter. Shayeghi, M., Latunde-Dada, G.O., Oakhill, J.S., Laftah, A.H., Takeuchi, K., Halliday, N., Khan, Y., Warley, A., McCann, F.E., Hider, R.C., Frazer, D.M., Anderson, G.J., Vulpe, C.D., Simpson, R.J., McKie, A.T. Cell (2005) [Pubmed]
  14. SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Hughes, A.L., Todd, B.L., Espenshade, P.J. Cell (2005) [Pubmed]
  15. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Nakayama, K., Frew, I.J., Hagensen, M., Skals, M., Habelhah, H., Bhoumik, A., Kadoya, T., Erdjument-Bromage, H., Tempst, P., Frappell, P.B., Bowtell, D.D., Ronai, Z. Cell (2004) [Pubmed]
  16. The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after infection. Welliver, R.C., Wong, D.T., Sun, M., Middleton, E., Vaughan, R.S., Ogra, P.L. N. Engl. J. Med. (1981) [Pubmed]
  17. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A., Simon, M.C. Nature (1997) [Pubmed]
  18. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Barbour, B., Szatkowski, M., Ingledew, N., Attwell, D. Nature (1989) [Pubmed]
  19. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Mukhopadhyay, D., Tsiokas, L., Zhou, X.M., Foster, D., Brugge, J.S., Sukhatme, V.P. Nature (1995) [Pubmed]
  20. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Cosby, K., Partovi, K.S., Crawford, J.H., Patel, R.P., Reiter, C.D., Martyr, S., Yang, B.K., Waclawiw, M.A., Zalos, G., Xu, X., Huang, K.T., Shields, H., Kim-Shapiro, D.B., Schechter, A.N., Cannon, R.O., Gladwin, M.T. Nat. Med. (2003) [Pubmed]
  21. Surviving anoxia: a tale of two white matter tracts. Baltan, S. Crit. Rev. Neurobiol (2006) [Pubmed]
  22. Hypoxia modulates cholinergic but not opioid activation of G proteins in rat hippocampus. Hambrecht, V.S., Vlisides, P.E., Row, B.W., Gozal, D., Baghdoyan, H.A., Lydic, R. Hippocampus (2007) [Pubmed]
  23. A1 adenosine receptors play an essential role in protecting the embryo against hypoxia. Wendler, C.C., Amatya, S., McClaskey, C., Ghatpande, S., Fredholm, B.B., Rivkees, S.A. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  24. Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Feala, J.D., Coquin, L., McCulloch, A.D., Paternostro, G. Mol. Syst. Biol. (2007) [Pubmed]
  25. Magnesium deficiency causes loss of response to intermittent hypoxia in paraganglion cells. Torii, S., Kobayashi, K., Takahashi, M., Katahira, K., Goryo, K., Matsushita, N., Yasumoto, K., Fujii-Kuriyama, Y., Sogawa, K. J. Biol. Chem. (2009) [Pubmed]
  26. Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. Tak, E., Lee, S., Lee, J., Rashid, M.A., Kim, Y.W., Park, J.H., Park, W.S., Shokat, K.M., Ha, J., Kim, S.S. J. Hepatol. (2011) [Pubmed]
  27. Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Wingrove, J.A., O'Farrell, P.H. Cell (1999) [Pubmed]
  28. p63 is a p53 homologue required for limb and epidermal morphogenesis. Mills, A.A., Zheng, B., Wang, X.J., Vogel, H., Roop, D.R., Bradley, A. Nature (1999) [Pubmed]
  29. Identification of an angiogenic mitogen selective for endocrine gland endothelium. LeCouter, J., Kowalski, J., Foster, J., Hass, P., Zhang, Z., Dillard-Telm, L., Frantz, G., Rangell, L., DeGuzman, L., Keller, G.A., Peale, F., Gurney, A., Hillan, K.J., Ferrara, N. Nature (2001) [Pubmed]
  30. HIF-1 and mechanisms of hypoxia sensing. Semenza, G.L. Curr. Opin. Cell Biol. (2001) [Pubmed]
  31. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W., McKnight, S.L. Genes Dev. (1998) [Pubmed]
  32. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Oosthuyse, B., Moons, L., Storkebaum, E., Beck, H., Nuyens, D., Brusselmans, K., Van Dorpe, J., Hellings, P., Gorselink, M., Heymans, S., Theilmeier, G., Dewerchin, M., Laudenbach, V., Vermylen, P., Raat, H., Acker, T., Vleminckx, V., Van Den Bosch, L., Cashman, N., Fujisawa, H., Drost, M.R., Sciot, R., Bruyninckx, F., Hicklin, D.J., Ince, C., Gressens, P., Lupu, F., Plate, K.H., Robberecht, W., Herbert, J.M., Collen, D., Carmeliet, P. Nat. Genet. (2001) [Pubmed]
  33. S-nitrosothiols signal the ventilatory response to hypoxia. Lipton, A.J., Johnson, M.A., Macdonald, T., Lieberman, M.W., Gozal, D., Gaston, B. Nature (2001) [Pubmed]
  34. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Goldberg, M.A., Dunning, S.P., Bunn, H.F. Science (1988) [Pubmed]
  35. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Tian, H., McKnight, S.L., Russell, D.W. Genes Dev. (1997) [Pubmed]
  36. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. Lee, S.H., Wolf, P.L., Escudero, R., Deutsch, R., Jamieson, S.W., Thistlethwaite, P.A. N. Engl. J. Med. (2000) [Pubmed]
  37. Branching morphogenesis of the Drosophila tracheal system. Ghabrial, A., Luschnig, S., Metzstein, M.M., Krasnow, M.A. Annu. Rev. Cell Dev. Biol. (2003) [Pubmed]
  38. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Madan, A., Semenza, G.L., Bedi, A. Genes Dev. (2000) [Pubmed]
  39. Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. Pichiule, P., Chavez, J.C., Schmidt, A.M., Vannucci, S.J. J. Biol. Chem. (2007) [Pubmed]
  40. Selective inhibition of MEK1/2 reveals a differential requirement for ERK1/2 signalling in the regulation of HIF-1 in response to hypoxia and IGF-1. Sutton, K.M., Hayat, S., Chau, N.M., Cook, S., Pouyssegur, J., Ahmed, A., Perusinghe, N., Le Floch, R., Yang, J., Ashcroft, M. Oncogene (2007) [Pubmed]
  41. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Fasanaro, P., D'Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M.C., Martelli, F. J. Biol. Chem. (2008) [Pubmed]
  42. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. Matsui, T., Nakata, N., Nagai, S., Nakatani, A., Takahashi, M., Momose, T., Ohtomo, K., Koyasu, S. J. Nucl. Med. (2009) [Pubmed]
  43. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Shweiki, D., Itin, A., Soffer, D., Keshet, E. Nature (1992) [Pubmed]
  44. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. Kuroki, M., Voest, E.E., Amano, S., Beerepoot, L.V., Takashima, S., Tolentino, M., Kim, R.Y., Rohan, R.M., Colby, K.A., Yeo, K.T., Adamis, A.P. J. Clin. Invest. (1996) [Pubmed]
  45. Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver. Lemasters, J.J., Stemkowski, C.J., Ji, S., Thurman, R.G. J. Cell Biol. (1983) [Pubmed]
  46. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Zhou, X., Zhai, X., Ashraf, M. Circulation (1996) [Pubmed]
  47. Increased activation of sympathetic nervous system and endothelin by mental stress in normotensive offspring of hypertensive parents. Noll, G., Wenzel, R.R., Schneider, M., Oesch, V., Binggeli, C., Shaw, S., Weidmann, P., Lüscher, T.F. Circulation (1996) [Pubmed]
 
WikiGenes - Universities