The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Raman Evidence for Specific Substrate-Induced Structural Changes in the Heme Pocket of Human Cytochrome P450 Aromatase during the Three Consecutive Oxygen Activation Steps.

Specific substrate-induced structural changes in the heme pocket are proposed for human cytochrome P450 aromatase (P450arom) which undergoes three consecutive oxygen activation steps. We have experimentally investigated this heme environment by resonance Raman spectra of both substrate-free and substrate-bound forms of the purified enzyme. The Fe-CO stretching mode (nu(Fe)(-)(CO)) of the CO complex and Fe(3+)-S stretching mode (nu(Fe)(-)(S)) of the oxidized form were monitored as a structural marker of the distal and proximal sides of the heme, respectively. The nu(Fe)(-)(CO) mode was upshifted from 477 to 485 and to 490 cm(-)(1) by the binding of androstenedione and 19-aldehyde-androstenedione, substrates for the first and third steps, respectively, whereas nu(Fe)(-)(CO) was not observed for P450arom with 19-hydroxyandrostenedione, a substrate for the second step, indicating that the heme distal site is very flexible and changes its structure depending on the substrate. The 19-aldehyde-androstenedione binding could reduce the electron donation from the axial thiolate, which was evident from the low-frequency shift of nu(Fe)(-)(S) by 5 cm(-)(1) compared to that of androstenedione-bound P450arom. Changes in the environment in the heme distal site and the reduced electron donation from the axial thiolate upon 19-aldehyde-androstenedione binding might stabilize the ferric peroxo species, an active intermediate for the third step, with the suppression of the formation of compound I (Fe(4+)=O porphyrin(+)(*)) that is the active species for the first and second steps. We, therefore, propose that the substrates can regulate the formation of alternative reaction intermediates by modulating the structure on both the heme distal and proximal sites in P450arom.[1]

References

 
WikiGenes - Universities