The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Misacylation of Yeast Amber Suppressor tRNATyr by E. coli Lysyl-tRNA Synthetase and Its Effective Repression by Genetic Engineering of the tRNA Sequence.

Through an exhaustive search for Escherichia coli aminoacyl-tRNA synthetase(s) responsible for the misacylation of yeast suppressor tRNA(Tyr), E. coli lysyl-tRNA synthetase was found to have a weak activity to aminoacylate yeast amber suppressor tRNA(Tyr) (CUA) with l-lysine. Since our protein-synthesizing system for site-specific incorporation of unnatural amino acids into proteins is based on the use of yeast suppressor tRNA(Tyr)/tyrosyl-tRNA synthetase ( TyrRS) pair as the "carrier" of unusual amino acid in E. coli translation system, this misacylation must be repressed as low as possible. We have succeeded in effectively repressing the misacylation by changing several nucleotides in this tRNA by genetic engineering. This "optimized" tRNA together with our mutant TyrRS should serve as an efficient and faithful tool for site-specific incorporation of unnatural amino acids into proteins in a protein-synthesizing system in vitro or in vivo.[1]

References

 
WikiGenes - Universities